Tri-b connectedness in tritopological space

Ranu Sharma^{1,a}and Sachin Sharma^{2,b}

^{1,,a}Department of Applied Mathematics and Computational Science, SGSITS, Indore(M.P.), India, ^{1,,b}Department of Mathematics, SJHSG Innovative College, Indore(M.P.), India, Email: <u>ranusamarth@gmail.com</u>, <u>sachin.150880@gmail.com</u>

Abstract.

The aim of this paper is to introduce new type of tri-b connectedness in tri topological spaces and also defined tri-b separation properties in tri topological spaces.

Keywords: tri-b connectedness, tri-b disconnectedness and tri-b separation.

AMS Mathematics Subject Classification (2010): 54A40

1. Introduction

The idea of b-open sets in a topological space was given by D. Andrijvic [4] in 1996. Al-Hawary & A.Alomari [3] defined the notion of b-open set & b-continuity in bitopological space and established several fundamental properties. Abo Khadra and Nasef [2] discussed b-open set in bitopological spaces. Pervin W.J.[10], I.L. Reilly [12], J. Swart [14], B. Dvalishi [6] and T. Birsan [5] studied connectedness in bitopological spaces. A. Kandil and others [1] studied connectedness in bitopological ordered spaces and in ideal bitopological spaces. Tri topological space is a generalization of bitopological space. The study of tri-topological space was first initiated by Martin M. Kovar[8]. S. Palanimmal [9] investigated tri toplogical spaces in 2011..N.F. Hameed & Mohammed Yahya Abid [7] studied separation axioms in tri-topological spaces and gives the definition of 123 open set in tri topological spaces. P. Priyadharsini and A. Parvathi [11] introduced tri-b open sets in tri topological spaces. R. Sharma B.A Deole and S. Verma[13] studied some properties of tri-b open sets. In this paper, we introduce tri-b connectedness and tri-b separated sets in tri topological space. Here we are using tri-b open set in place of 123 open set.

2. Preliminaries

Definition 2.1[9]: Let X be a nonempty set and T_1, T_2 and T_3 are three topologies on X. The set X together with three topologies is called a tri topological space and is denoted by (X, T_1, T_2, T_3) .

Definition 2.3[11]: Let (X, T_1, T_2, T_3) be a tri topological space, a subset A of a space X is said to be tri-b open set if $S \subset tri - cl(tri - int S) \cup tri - int(tri - clS)$.

Definition 2.4[11]: Let (X, T_1, T_2, T_3) be a tri topological space and let $A \subset X$. The intersection of all trib closed sets containing A is called the tri-b closure of A & denoted by tri - b - clA. Tri-b-intA is the union of all tri-b open sets contained in A.

Definition 2.4[10]: A bitopological space is (X, T_1, T_2) said to be connected if and only if X cannot be expressed as the union of two non empty disjoint sets A and B such that A is T_1 open and B is T_2 open. When X can be so expressed, we write X = A/B and call this a separation of X.

3. tri-b separated sets in tritopological space

Definition 3.1: Let (X, T_1, T_2, T_3) be a tri topological space, two non empty subsets A and B of X are said to be tri-b separated if and only if $A \cap tri - b cl(B) = \phi$ and $tri - b cl(A) \cap B = \phi$. These two conditions are equivalent to the single condition $[A \cap tri - b cl(B)] \cup [tri - b cl(A) \cap B] = \phi$

Example 3.2: Let $X = \{a, b, c\}, T_1 = \{X, \phi\}, T_2 = \{X, \phi, \{a\}\}, T_3 = \{X, \phi, \{b, c\}\}$

Tri open sets in tri topological spaces are union of all tri topologies.

Then tri open sets of $X = \{X, \phi, \{a\}, \{b, c\}\}$

Tri-b open set of X is denoted by $tri - BO(X) = \{X, \phi, \{a, b\}, \{c\}, \{a, c\}, \{b, c\}\}$.

If we take $A = \{a, b\}$ and $B = \{c\}$ Then

 $[A \cap tricl(B)] \cup [tricl(A) \cap B] = \{\{b\} \cap \{d\}\} \cup \{\{b\} \cap \{d\}\} = \phi.$

Page | 418

www.junikhyat.com

Copyright © 2020 Authors

Then $\{a, b\}$ and $\{c\}$ are tri-b separated sets.

Theorem 3.3 : If A and B are tri-b separated subsets of a tri topological space

 (X,T_1,T_2,T_3) and $C \subset A$ and $D \subset B$, then C and D are also tri-b separated.

Proof: Since A and B are tri-b separated sets then $A \cap tri - b cl(B) = \phi$ and

Also $C \subset A \Rightarrow tri - b cl(C) \subset tri - b cl(A)$ and

 $D \subset B \Longrightarrow tri - b \ cl(D) \subset tri - b \ cl(B) \dots (2)$

By (1) and (2) that $C \cap tri - b \ cl(D) = \phi$ and $tri - b \ cl(C) \cap D = \phi$

Hence C and D are tri-b separated.

Theorem 3.4 : Two tri-b closed (tri-b open) subsets A, B of a tri topological

space (X, T_1, T_2, T_3) are tri-b separated if and only if they are disjoint.

Proof : Since any two tri-b separated sets are disjoint, we have to prove that two disjoint tri-b closed (tri-b open) sets are tri-b separated .

If A and B are both disjoint tri-b closed, then :

 $A \cap B = C$, $tri - b \ cl(A) = A$ and $tri - b \ cl(B) = B \dots [1]$

So that $tri - b cl(A) \cap B = \phi$ and $A \cap tri - b cl(B) = \phi$

Therefore A and B are tri-b separated.

If A and B are both disjoint and tri-b open, then A^c and B^c are both tri-b closed so that :

$$tri - b \ cl(A^c) = A^c \text{ and } tri - b \ cl(B^c) = B^c$$

Also $A \cap B = \phi \Longrightarrow A \subset B^c$ and $B \subset A^c$

 $\Rightarrow tri - b \ cl(A) \subset tri - b \ cl(B^c) = B^c \ and \ tri - b \ cl(B) \subset tri - b \ cl(A^c) = A^c$

www.junikhyat.com

Copyright © 2020 Authors

 \Rightarrow tri - b cl(A) \cap B = ϕ and A \cap tri - b cl(B) = ϕ

Hence \Rightarrow *A* and *B* are tri-b separated.

4. tri-b connected and tri-b disconnected sets in tri topological space

Definition 4.1 : Let (X, T_1, T_2, T_3) be a tri topological space, a subset A of X is said to be tri-b disconnected if and only if it is the union of two non empty tri-b separated sets. That is, if and only if there exist two non empty tri-b separated sets C and D such that $C \cap tri - b cl(D) = \phi$, $tri - b cl(C) \cap D = \phi$ and $A = C \cup D$, A is said to be tri-b connected if and only if it is not tri-b disconnected.

Example 4.2: Let $X = \{a, b, c\}, T_1 = \{X, \phi\}, T_2 = \{X, \phi, \{a\}\}, T_3 = \{X, \phi, \{b, c\}\}$

Tri open sets in tri topological spaces are union of all tri topologies.

Then tri open sets of $X = \{X, \phi, \{a\}, \{b, c\}\}$

Tri-b open set of X is denoted by $tri - BO(X) = \{X, \phi, \{a, b\}, \{c\}, \{a, c\}, \{b, c\}\}$.

If we take $A = \{a, b, c\}$, $C = \{a, b\}$ and $D = \{c\}$ Then

 $A = C \cup D$ and $\{a, b\} \cap \{c\} = \phi$ and

 $C \cap tri - b cl(D) = \phi, tri cl(C) \cap D = \phi.$

Then $\{a, b\}$ and $\{c\}$ are tri-b separated sets.

Hence the set $\{a, b, c\}$ is tri-b disconnected.

Remarks 4.3 :

(i) The empty set in tri - b O(X) is trivially tri-b connected.

(ii) Every singleton set in tri - bO(X) is tri-b connected since it cannot be

expressed as a union of two non empty tri-b separated sets.

Theorem 4.4 : A tri topological space (X, T_1, T_2, T_3) is tri-b disconnected if and only if there exists a non empty proper subset of X which is both tri-b open and tri-b closed in X.

Proof: Let A be a non empty proper subset of X which is both tri-b open and tri-b closed in X

. We have to show that X is tri-b disconnected :

Let $B = A^c$. Then B is non empty since A is a proper subset of X. Moreover, $A \cup B = X$ and

 $A \cap B = \phi$, since A is both tri-b open and tri-b closed, B is also both tri-b open and tri-b

closed.

Hence tri - b cl(A) = A and tri - b cl(B) = B it follows that $tri - b cl(A) \cap B = \phi$ and $A \cap tri - b cl(B) = \phi$. Thus X has been expressed as a union of two tri-b separated sets and so X is tri-b disconnected.

Conversely: Let X is tri-b disconnected. Then there exist non empty subsets A

and B of X such that $tri - b cl(A) \cap B = \phi$ and $A \cap tri - b cl(B) = \phi$ and $A \cup B = X$

. Since $tri - b \ cl(A) = A$ and $tri - b \ cl(B) = B \Longrightarrow A \cap B = \phi$.

Hence $A = B^{C}$ and B is non empty, A is a proper subset of X. Now $A \cup tri - b cl(B) = X$.

[since $A \cup B = X$ and $B \subset tri - bcl(B) \Rightarrow X \subset A \cup tri - bcl(B)$ but $A \cup tri cl(B) \subset X$ always]

Also $A \cap tri - b \ cl(B) = \phi \Longrightarrow A = (tri - b \ cl(B))^{C}$ and similarly $B = (tri - b \ cl(A))^{C}$.

Since tri - bcl(A) and tri - bcl(B) are tri-b closed sets, it follows that A and B are tri-b open sets , and since $A = B^{C}$, A is also tri-b closed. Thus A is non empty proper subset of X which is both tri-b open and tri-b closed.

In the same way we can show that B is also non empty proper subset of X which is both tri-b open and tri-b closed.

Theorem 4.5: Let (X, T_1, T_2, T_3) be a tri topological space and A and B be non empty sets in space X.

- (i) If A and B are tri-b separated and $A_1 \subset A$ and $B_1 \subset B$, then A_1 and B_1 are so.
- (ii) If $A \cap B = \phi$ such that each of A and B are both tri-b open (tri-b closed), then A and B are tri-b separated.
- (iii) If each of A and B both tri-b open (tri-b closed) and if $H = A \cap (X B)$ and $G = B \cap (X A)$, then H and G.
- **Proof**: (i) Since $A_1 \subset A$ then $tri b clA_1 \subset tri b clA$. Then $B \cap tri b cl(A) = \phi$ implies $B_1 \cap tri - b cl(A) = \phi$ and $B_1 \cap tri - b cl(A_1) = \phi$. Similarly $A_1 \cap tri cl(B_1) = \phi$. Hence A_1 and
- B_1 are tri-b separated.

(ii) Since A = tri - b cl(A) and B = tri - b cl(B) and $A \cap B = \phi$, then $tri - b cl(A) \cap B = \phi$ and $tri - b cl(B) \cap A = \phi$. Hence A and B are separated. If A and B are tri-b open, then their complements are tri-b closed.

(iii) If *A* and *B* are tri-b open, then X - A and X - B are tri-b closed. Since $H \subset X - B$, $tri - b \ cl(H) \subset tri - b \ cl(X - B) = X - B$ and so $tri - b \ cl(H) \cap B = \phi$. Thus $G \cap tri - b \ cl(H) = \phi$. Similarly, $H \cap tri - b \ cl(B) = \phi$. Hence *H* and *G* are tri-b separated.

Theorem 4.6: Let (X, T_1, T_2, T_3) be a tri topological space and $E \subset X$. If E is tri-b connected, then so is tri-bcl(E).

Proof :Let *E* be the tri-b connected subset of a tri topological space (X, T_1, T_2, T_3) . To prove that tri-bcl(E) is connected .Suppose contrary, Then tri-bcl(E) is disconnected .Then their

Page | 422

non exist empty $A, B \subset X$ such that $tri - b clA \cap B = \phi, A \cap tri - b clB = \phi.$ sets $tri-b \ cl \ E = A \cup B$ $A \cup B = tri - b \ cl \ E \supset E$, $\Rightarrow E \subset A \cup B$, *E* is connected. $\Rightarrow E \subset A \text{ or } E \subset B \{ by theorem 4.5 \}$ $E \subset A \Longrightarrow tri - b \ cl \ E \subset tri - b \ cl \ A$ $\Rightarrow E \subset A \cup B$, $\Rightarrow tri - b \ cl \ E \cap B \subset tri - b \ cl \ A \cap B = \phi \ \dots (i)$ $tri - b cl E = A \cup B$ \Rightarrow *B* \subset *tri* – *b cl E* \Rightarrow tri - b cl $E \cap B = B$ $\Rightarrow B = \phi$ For $tri - b cl E \cap B = \phi$ (from (i)) *H* in *X* such that $tri - bcl(E) = G \cup H$. Since $E = (G \cap E) \cup (H \cap E)$ and $tri - b \ cl(G \cap E) \subset tri - b \ cl(G)$ and $tri - bcl(H \cap E) \subset tri - bcl(H)$ and $G \cap H = \phi$ then $(tri - b \ cl(G \cap E)) \cap H = \phi$. Hence $(tri - b \ cl(G \cap E)) \cap (H \cap E) = \phi$. Similarly $(cl(H \cap E)) \cap (G \cap E) = \phi$. Therefore E is connected a contradiction for $B \neq \phi$ similarly $E \subset B \Rightarrow A = \phi$. Again we get a contradiction . Hence, If E is tri-b connected, then so is $tri-b \ cl(E)$.

Corollary 4.7: A tri topological space (X, T_1, T_2, T_3) is tri-b connected if and only if the only non empty subset of X which is both tri-b open and tri-b closed in X is X itself.

Theorem 4.8: A tri topological space (X, T_1, T_2, T_3) is tri-b disconnected if and only if any one of the following statements holds :

(i) X is the union of two non empty disjoint tri-b open sets .

(ii) X is the union of two non empty disjoint tri-b closed sets.

Proof: Let X be a tri-b disconnected. Then there exists a nonempty proper subset A of X which is both tri-b open and tri-b closed. Then A^{C} is also both tri-b open and tri-b closed also $A \cup A^{C} = X$. Hence the sets A and A^{C} satisfy the requirements of (i) and (ii).

Conversely ; let $X = A \cup B$ and $A \cap B = \phi$, where A, B are non empty tri-b open sets. It follows that $A = B^C$ so that A is tri-b closed.

Since B is non empty, A is a proper subset of X. Thus A is a non empty proper subset of X which is both tri-b open and tri-b closed. Hence by the theorem (4.4), X is tri-b disconnected.

Again, let $X = C \cup D$ and $C \cap D = \phi$, where C, D are non empty tri-b closed sets. then $C = D^C$ so that C is tri-b open. Since D is non empty, C is a proper subset of X which is both tri-b open and tri-b closed. Hence X is tri-b disconnected by the theorem. Thus it is shown that if any one of the conditions (i) and (ii) holds, then X is tri-b disconnected.

Corollary 4.9: A subset Y of a tri topological space X is tri-b disconnected if and only if Y is the union of two non empty disjoint sets both tri-b open (tri-b closed) in Y.

Theorem 4.10: Let (X, T_1, T_2, T_3) be a tri topological space . If A is a tri-b connected set of X and H, G are tri-b separated sets of X with $A \subset H \cup G$, then either $A \subset H$ or $A \subset G$.

Proof : Let $A \subset H \cup G$.Since $A = (A \cap H) \cup (A \cap G)$, then $(A \cap G) \cap tri - b \ cl(A \cap H) \subset G \cap cl(H) = \phi$. By similar reasoning .we have $(A \cap H) \cap tri - b \ cl(A \cap G) \subset H \cap cl(G) = \phi$.Suppose that $A \cap H$ and $A \cap G$ are nonempty. Then A is not tri-b connected. This is a contradiction. Thus either $A \cap H = \phi$ or $A \cap G = \phi$. This implies that $A \subset H$ or $A \subset G$.

Theorem 4.11: Let (X, T_1, T_2, T_3) and (Y, T_1', T_2', T_3') are two tri topological space. Let $f: X \to Y$ be a continuous function. if M is tri-b connected in X, then f(M) is tri-b connected in Y.

Proof : Suppose that f(M) is tri-b disconnected in Y. There exist two tri-b separated sets P and Q of Y such that $f(M) = P \cup Q$. Set $A = M \cap f^{-1}(P)$ and $B = M \cap f^{-1}(Q)$. Since $f(M) \cap P \neq \phi$ then $M \cap f^{-1}(P) \neq \phi$ and so $A \neq \phi$. Similarly $B \neq \phi$. Since $P \cap Q = \phi$, $A \cap B = M \cap f^{-1}(P \cap Q) = \phi$ and so $A \cap B = \phi$. Since f is continuous then by Lemma 4.5, $tri - b \ cl(f^{-1}(Q)) \subset f^{-1}(tri - b \ cl(Q))$ and $B \subset f^{-1}(Q)$ then $tri - b \ cl(B) \subset f^{-1}(tri - b \ cl(Q))$. Since $P \cap tri - b \ cl(Q) = \phi$, then $A \cap f^{-1}(tri - b \ cl(Q)) \subset f^{-1}(P) \cap f^{-1}(tri - b \ cl(Q)) = \phi$ and then $A \cap tri - b \ cl(B) = \phi$. Thus A and B are tri-b separated.

Theorem 4.12: If A is a tri-b connected set of an tri topological space (X,T_1,T_2,T_3) and $A \subset B \subset tri-b \ cl(A)$ then B tri-b connected.

Proof: Suppose *B* is not tri-b connected. There exist tri-b separated sets *U* and *V* of *X* such that $B = U \cup V$. This implies that *U* and *V* are nonempty and $tri-bcl(U) \cap V = U \cap tri-bcl(V) = \phi$. By Theorem 4.7, we have either $A \subset U$ or $A \subset V$. Suppose that $A \subset U$. Then $tri-bcl(A) \subset tri-bcl(U)$ and $V \cap tri-bcl(A) = \phi$. This implies that $V \subset B \subset tri-bcl(A)$ and $V = tri-bcl(A) \cap V = \phi$. Thus, *V* is an empty set for if *V* is nonempty, this is a contradiction. Suppose that $A \subset V$. By similar way, it follows that *U* is empty. This is a contradiction. Hence, B is tri-b connected.

Theorem 4.13: If $\{M_i : i \in N\}$ is a nonempty family of tri-b connected sets of an tri topological space (X, T_1, T_2, T_3) with $\bigcap_{i \in I} Mi \neq \phi$ Then $\bigcup_{i \in I} Mi$ is tri-b connected.

Page | 425

Proof: Suppose that $\bigcup_{i \in I} Mi$ is not tri-b connected. Then we have $\bigcup_{i \in I} Mi = H \cup G$, where H and G are tri-b separated sets in X. Since $\bigcap_{i \in I} Mi \neq \phi$ we have a point x in $\bigcap_{i \in I} Mi$ Since $x \in \bigcup Mi$, either $x \in H$ or $x \in G$. Suppose that $x \in H$. Since $x \in Mi$ for each $i \in N$, then Mi and H intersect for each $i \in N$. By theorem 4.12; $Mi \subset H$ or $Mi \subset G$.Since H and G are disjoint, $Mi \subset H$ for all $i \in Z$ and hence $\bigcup_{i \in I} Mi \subset H$. This implies that G is empty. This is a contradiction. Suppose that $x \in G$. By similar way, we have that H is empty. This is a contradiction. Thus, $\bigcup_{i \in I} Mi$ is tri-b connected.

Theorem 4.14: If *A* and *B* are tri-b connected sets which are tri-b separated ,then $A \cup B$ is tri-b connected.

Proof: Suppose $A \cup B$ is tri-b disconnected and suppose $G \cup H$ is a disconnection of $A \cup B$. Since A is a tri-b connected subsets of $A \cup B$, either $A \subset G$ or $A \subset H$. Similarly either $B \subset G$ or $B \subset H$.

If $A \subset G$ and $B \subset H$ then $(A \cup B) \cap G = G$ and $(A \cup B) \cap H = H$ are tri-b separated but this contradicts the hypothesis. Hence either $A \cup B \subset G$ or $A \cup B \subset B$ and so $G \cup H$ is not a disconnection of $A \cup B$. In other words $A \cup B$ is tri-b connected.

CONCLUSION:

In this paper the idea of tri-b connectedness and tri-b separation were introduced and studied in tri topological spaces.

REFERENCES:

[1] A. Kandil, O. Tantwauy ,S.A. El. Sheikh & M. Hosny. (2014Gen. Math. Notes ,Vol 24, No.2, pp 37-52. ICSRS Publication.

- [2]Abo khadra A , Nasef A,A, on extension of certain concepts from a topological space to a bitopological space.Proc. Math.Phys.Soc.Egypt.79(2003),91-102.
- [3] T Al-Hawary & A.Al-omari, b-open set& b-continuity in bitological spaces, Al-Manarah ,13(3),89-101(2007).
- [4] Andrijevic D., b-open sets, Matematicki Vesnik, 1996, 48, 59-64.
- [5] Birsan T.,(1968), Surles espaces bitopological connexes, An sti. Univ. Al. cuza Iasi sect. I.t. XIV fase 2 ,293-96.
- [6]Dvalishi B. (2004), connectedness of a fine topology and localization in bitopological spaces, gergian. Math. J.,11 (4), pp 713 -732.
- [7] Hameed N.F. & Mohammed Yahya Abid (2011).Certain types of separation axioms in tri topological spaces. Iraqi journal of science. Vol 52,(2),212-217.
- [8] Kovar, M.,(2000).On 3-Topological version of Thet- Reularity. Internat. J. Matj, Sci. ,23 (6), 393-398.
- [9] Palaniammal S., A Study of Tri topological spaces, Ph.D Thesis 2011.
- [10] Pervin. W.J.(1967), Connectedness in bitopological spaces, Indag Math. ,29, 369-372.
- [11] Priyadharsini P. & Parvathi A., Tri-b-continuous function in tri topological spaces.
- [12] Reilly I.L.. (1971), On pairwise connected bitopological spaces, Kyungpook Math. J., 11(1) 25-28.
- [13] Sharma R., Deole B.A. and Verma S.(2018), "Some Properties of Tri-b Open Sets in Tri Topological Space".
- [14] Swart J. (1971), Total disconectedness in bitopological spaces and product bitopological spaces, Indag. Math.33,135-145.

www.junikhyat.com

Copyright © 2020 Authors