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Abstract 

 

In this paper is to clearly formulate various possible assumptions for a comparison function in contractive 

conditions and  prove some common fixed-point theorems for three self-mappings in the context of a 

complete b-metric space by proposing a new contractive type condition. Further, we derive a result for 

four self-mappings in the same setting. 
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  Introduction 

Fixed-point theory was a results of the investigation of the existence and uniqueness of a solution of 

certain differential equations. In 1922, Banach [9] reported an elegant fixed-point theorem .In 1993, 

Czerwik [17] suggested a successful and proper generalization of the metric space notion by introducing 

the concept of b-metric space. Following this famous result in the setting of b-metric spaces, several 

extensions in distinct aspects have been released in this direction (see e.g., [2-4,6-7,12-15] and references 

therein).In this paper, we study certain common fixed-point theorems for four maps in the setting of 

complete b-metric spaces. Firstly, we recall the notion of b-metric. 

Preliminaries 

Definition 1  [17]. Let X be a non empty set. A function d : X×X → [0,∞) is called a b-metric if the 

following axioms are fulfilled: 

(b1) d is reflexive, that is, d(x,y) = 0 if and only if x = y. 

(b2) d has a symmetry, that is, d(x,y) = d(y,x) for all x,y∈ X.  

(b3) d(x,y) ≤ s[d(x,z) +d(z,y)] for all x,y,z∈ X, where s≥1.  

Here, (X,d) is called a b-metric space. 

 

Remark 1. In case of s = 1,the b-metric coincide the standard metric. Notice  that b-metric does not need 

to be continuous in general. In this manuscript, we deal with continuous b-metrics only [11]. 

 Example of b-metric. 

 Example 1. Let X = {x1 : 1≤i ≤ M} for some M ∈N and s≥2. Define d : X×X →∞ as  

d(xi,xj) =0 if i = j, 
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             = s if (i,j) = (1,2) or (i,j) = (2,1),  

             = 1 otherwise.  

     Consequently, we derive that 

    d(xi,xj) ≤ s/ 2 [d(xi ,xk) +d(xk,xj)], for all i,j,k ∈ {1,M}.  

Thus, (X,d) forms a b-metric for s > 2 where the ordinary triangle inequality does not hold. 

Example 2. (See e.g., [12]) For 0 < q < 1, the space L
q
[0,1] of all real-vauled functions f(t), t∈ [0,1] such 

that  
 

 
|f(t)|

q 
dt < ∞, endowed with  

d(f,h) :=  (  
 

 
|f(t)−h(t)|

q 
dt)

1/q
, for each x,y∈ L

p
[0,1], forms a b-metric space. Notice that s = 2

1/q
. 

Definition 2. (see e.g., [1,20]) Suppose that f and g are self mappings on a non-empty set X. A point x is 

names as a coincidence point of f and g in case fx = gx, for x in X. Moreover, z is called a point of 

coincidence of f and g whenever z = fx = gx for some x in X. In addition, f and g are said to be weakly 

compatible, if fx = gx ⇒ f(gx) = g(fx) holds for every x ∈ X.  

Proposition 1. (see Lemma 3 in [5]) Let f,g,h be self mappings on a non-empty set X and v ∈ X is the a 

unique coincidence point of f,g and h. These self-mappings, f,g,h, have a unique common fixed point 

if{f,h} and{g,h}are weakly compatible. 

 Definition 3. [20,21] A function φ : [0,∞) → [0,∞) is called a comparison function if it is increasing and 

φ
n
(t) →0 as n→∞ for every t∈ [0,∞), where φ

n
 is the n-th iterate of φ. 

Lemma 1. ([20,21]) If φ : [0,∞) → [0,∞) is a comparison function, then 

 1. each iterate φ
k
 of φ, k ≥1 is also a comparison function;  

2. φ is continuous at 0; 

 3. φ(t) < t for all t > 0.  

Definition  4. Let s ≥ 1be a real number. A function ψ : [0,∞) → [0,∞) is called a (b)-comparison function 

if 

 1. ψ is increasing;  

2. there exist k0 ∈ N, a ∈ (0,1) and a convergent nonnegative series     
 v k such that s

k+1
 ψ

k+1
 (t) ≤ a s 

k
 

ψ
k
 (t) +vk, for k ≥k0 and any t≥0.  

Let Ψ = {ψ : [0,∞) → [0,∞) : ψ is b−comparison function}. Note that in case of s = 1, a (b)-comparison 

function is named as (c)-comparison. 

 Lemma 2. ([11]) For φ ∈Ψ, 
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 1. the series   
   s

k
 φ

k
 (t) converges for any t∈ [0,∞); 

2. the function bs : [0,∞) → [0,∞) defined as bs  =    
 s

k
 φ

k
 (t)  is increasing and continuous at t = 0.  

Remark 2. On account of Lemma 2 and Lemma 1, any (b)-comparison function, we have ψ satisfies     

ψ(t) < t. 

Fisher [18] proved the following existence theorem: 

Theorem 1. [18] Let T be a mapping of the complete metric space X into itself satisfying the inequality 

[d(Tx,Ty)]
2
 ≤ a(d(x,Tx)d(y,Ty)) +b(d(x,Ty)d(y,Tx)) ∀x,y∈ X, 0≤ a < 1, 0≤b  

then T has a fixed point in X. 

 In 1980, Pachpatte [23] extended the result of Fisher [18] in the following way. 

Theorem 2. [23] Let T be a mapping of the complete metric space X into itself satisfying the inequality 

[d(Tx,Ty)
2
 ≤ a[d(x,Tx)d(y,Ty) +d(x,Ty)d(y,Tx)] +b[d(x,Tx)d(y,Tx) +d(x,Ty)d(y,Ty)) ∀x,y∈ X, 

 where a,b≥0 and a+2b < 1 then T has a unique fixed point in X.  

 [8] proved the following existence theorem: 

Let (X,d) be a complete b-metric space and let f,g,h be mappings from X into itself satisfying the 

condition: f(X)∪g(X) ⊆ h(X).                                                                                                   (i)  

Let x0 ∈ X. By (1) there exists a point x1 ∈ X such that hx1 = fx0 and for x1 there exists x2 ∈ X such that 

hx2 = gx1. Inductively we can define the sequences {x n} and {yn} in X such that 

 y2n = hx2n+1 = fx2n, y2n+1 = hx2n+2 = gx2n+1 ∀n≥0.                                                                   (ii) 

Lemma 3. Let f,g,h be mappings from a b-metric space (X,d) into itself satisfying (1) and such that for all 

x,y∈ X d(fx,gy)]
2
 ≤ ψ(F(x,y)),                                                                               (iii)                                                                              

 where, ψ ∈Ψ and F(x,y) = max{d(fx,gy)d(hx, fx),d(fx,gy)d(hy,gy),d(hy, fx)d(hx,gy), 1 /2s 

d(hy,gy)d(hx,gy)}, ψ ∈Ψ . Then, the sequence {yn} defined by (2) is a Cauchy sequence in X. 

Theorem 3. Let (X,d) be a complete b-metric space, f,g,h be self mappings of X satisfying the conditions 

(i) and(iii). We suppose also that h(X) is a closed subspace of X. Then the maps f,g and h have a 

coincidence point z in X. Moreover, if the pairs {f,h} and {g,h} are weakly compatible then f,g and h have 

a unique common fixed point in X. 

Main Result 

Let (X,d) be a b-  metric space, and let f,g,h,t : X → X.  

Suppose that f(X) ⊂ h(X), g(X) ⊂ t(X)                  (1)                                                                                              
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 and one of these four subsets of X is closed. Let further  d[fx , gy] ≤ ϕ F[x ,y] 

Let x0 ∈ X. By (1) there exists a point x1 ∈ X such that hx1 = fx0 and for x1 there exists x2∈ X such that tx2 

= gx1. Inductively we can define the sequences {xn} and {yn} in X such that  

y2n = fx2n = hx 2n+1,y 2n+1 = gx2n+1 = tx2n+2, ∀n≥0.          (2)                                                                    

Lemma 4. Let f,g,h,t be mappings from a b-metric space (X,d) into itself satisfying (1) and such that for 

all x,y∈ X 

      [d(fx,gy)]
2
 ≤ ψ(F(x,y)),                                                                            (3)  

where, ψ ∈Ψ and  

F(x,y) = max{d(fx,gy)d(hx, fx),d(fx,gy)d(ty,gy),d(ty, fx)d(hx,gy),1/ 2sd(ty,gy)d(hx,gy)}, 

ψ ∈Ψ . Then, the sequence {yn} defined by (2) is a Cauchy sequence in X. 

Proof. For an arbitrary x0 ∈ X, we shall construct a sequence {xn} and {yn} in (2). If there exists n0 such 

that     Y 2n0 = Y 2n0+1  

we obtain : hx 2no+1= fx 2no = tx2no+2 = gx2no+1 

and hence, x2no+1 forms a common fixed point of h and g.  

Without loss of generality, we suppose that y2n ≠ y2n+1.  

 Accordingly, from(2)and(3)we find that 

 [d(y2n,y2n+1)]
2
 = [d(fx2n,gx2n+1)]

2
 ≤ ψ(F(x2n,x2n+1))                                      (4)  

F(x2n,x2n+1)=max{d(fx2n,gx2n+1)d(hx2n,fx2n),d(fx2n,gx2n+1),d(tx2n+1,gx2n+1),d(tx2n+1,fx2n),d(hx2n,gx2n+1),1/ 

2sd(hx2n+1,gx2n+1)d(hx2n,gx2n+1)}, 

                  

≤max{d(hx2n+1,tx2n+2)d(hx2n,hx2n+1),d(hx2n+1,tx2n+2)d(tx2n+1,tx2n+2),d(tx2n+1,hx2n+1)d(hx2n,tx2n+2),1/ 

2sd(tx2n+1,tx2n+2)d(hx2n,tx2n+2)}, 

         ≤max{d(y2n,y2n+1)d(y2n-1,y2n),d(y2n,y2n+1)d(y2n,y2n+1),d(y2n,y2n)d(y2n-1,y2n+1),1/ 2sd(y2n,y2n+1)d(y2n-

1,y2n+1)}, 

         ≤max{d(y2n,y2n+1)d(y2n-1,y2n),d(y2n,y2n+1)d(y2n,y2n+1),d(y2n,y2n)d(y2n-1,y2n+1),1/2s d(y2n,y2n+1)[d(y2n-

1,y2n)+ d(y2n,y2n+1)}, 

Suppose d(y2no-1,y2no) < d(y2no,y2no+1) for some n0.  

Since the function then the inequality (4) turns into 
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 [ d(y2no,y2no+1)]
2
 ≤ ψ([ d(y2no,y2no+1)]

2
 )< [ d(y2no,y2no+1)]

2
 

 which is a contradiction.  

Thus, we have d(y2n,y2n+1) ≤d(y2n-1,y2n) for all n∈N.  

Keeping in mind that ψ is non-decreasing, and by taking the inequality (4) into account and employing 

Remark 2 recursively, we conclude also that  

[d(y2n,y2n+1)]
2
 ≤ ψ([d(y2n-1,y2n)]

2
) < [d(y2n-1,y2n)]

2
  

                       ≤ ψ
2
([d(y2n-2,y2n-1)]

2
) < [d(y2n-2,y2n-1)]

2 
]  

                          ………………………                   

                      ≤ ψ
2n

([d(y0,y1)]
2
). 

By using the same arguments, similarly, we find that  

d(y2n-1,y2n) ≤d(y2n-2,y2n-1), 

 and moreover,  

[(y2n-1,y2n)] 
2 

≤ ψ([d(y2n-2,y2n-1)]
2
) < [d(y2n-2,y2n-1)]

2
  

                      ≤ ψ
2
([d(y2n-3,y2n-2)]

2
) < [d(y2n-3,y2n-2)]

2 

                                
 ··· 

                    ≤ ψ
2n-1

([d(y0,y1)]
2
).  

As a result, for all n∈N, we get [d(yn,yn+1)]
2
 ≤ ψ([d(yn-1,yn)]

2
) < [d(yn-1,yn)]

2
 ≤··· < ψ

n
([d(y0,y1)]

2
).     (5)          

On the account of Lemma 2, we conclude that 

lim n→∞ d(yn+1,yn) = 0.                        (6) 

Now, we shall indicate that the sequence {yn} is Cauchy.  

By using the modified triangle inequality (b3) recursively, and keeping the fact that (α + β)
2
 ≤ 2(α

2
 + β

2
) in 

mind, we observe the following  estimation for the distance d(yn,yn+k) for k ≥ 1 and s≥1 

 [d(yn,yn+k)]
2
 ≤ [s(d(yn,yn+1) +d(yn+1,yn+k))]

2
  

                       ≤ 2s
2
[d(yn,yn+1)]

2
 +2s

2
[d(yn+1,yn+k)]

2 

                                   
 ≤ 2s

2
[d(yn,yn+1)]

2
 +2s

2
{s[d(yn+1,yn+2) +d(yn+2,yn+k)]}

2
  

                       ≤ 2s
2
[d(yn,yn+1)]

2
 + (2s

2
)
2
[d(yn+1,yn+2)]

2
 + (2s

2
)
2
[d(yn+2,yn+k)]

2 

                                      
 . . .  
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               ≤2s
2
[d(yn,yn+1)]

2
+(2s

2
)
2
[d(yn+1,yn+2)]

2
+···+(2s

2
)
k
[d(yn+k-1,yn+k)]

2 
                               (7)       

Applying (5) and (7) we derive that 

 [d(yn,yn+k)]
2
 ≤ (2s

2
)ψ

n
([d(y0,y1)]

2
) + (2s

2
)
2
ψ

n+1
([d(y0,y1)]

2
) +···+ (2s

2
)
k
ψ

n+k-1
([d(y0,y1)]

2
) 

                = 
 

        
((2s

2
)
n
ψ

n
([d(y0,y1)]

2
) + (2s

2
)
n+1

 ψ
n+1

 ([d(y0,y1)]
2
) +... +(2s

2
)
n+k-1

ψ
n+k-1

([d(y0,y1)]
2
).           

(8) 

Consequently, we have d
2
(yn,y n+k) ≤ 1 /(2s

2
)
n-1

 [Pn+k-1−Pn-1],  n≥1, k ≥1 ,                    (9) 

where Pn = 
 
   (2s

2
)
j
ψ

j
([d(y0,y1)]

2
), n≥1. 

 On the account of Lemma 2,  the series 

  
   (2s

2
)
j
ψ

j
 ([d(y0,y1)]

2
) is convergent.  

Since s≥1, letting limit n→∞ in (9) we deduce that 

lim n→∞ d
2
(yn,yn+k ) ≤ lim n→∞1/ (2s

2
)
n-1

 [Pn+k-1 –Pn-1 ] = 0.                                                   (10) 

We find that the constructive sequence {yn} is Cauchy in (X,d).  

Theorem 4. Let (X,d) be a complete b-metric space, f,g,h and t be self mappings of X satisfying the 

conditions (1) and(3). We suppose also that h(X) and t (X) is a closed subspaces of X. Then the maps f,g,h 

and t have a coincidence point  z in X. Moreover, if the pairs {f,h}and{g,t} are weakly compatible then 

f,g,h and t have a unique common fixed point in X.  

Proof. Let us consider now the sequence {yn} defined by (2). By Lemma 3, we have that {yn} is a Cauchy 

sequence in X and since X is complete, the sequence {yn} converges to a point z in X. But, h(X)  is 

complete,being a closed subspace of X and since f(X) ⊆ h(X) and g(X) ⊆ t(X),the subsequences {y2n} 

and{y2n} which are contained in h(X) and t (X) must have a limit z in h(X) and t (X),  

i.e. lim n→∞ fx2n = lim n→∞ gx2n+1 = lim n→∞ hx2n+1 = lim n→∞ tx2n+2 = z. 

 Let u∈ h
-1

 z Then hu = z and we suppose that gu≠z . 

From (3) we have 

[d(fx2n,gu)]
2
 ≤ ψ(F(x2n,u)),                                (11) 

 where      F(x2n,u) = max{[d(fx2n,gu)d(hx2n, fx2n)],[d(fx2n,gu)d(hu,gu)] [d(hu, fx2n)d(hx2n,gu)], 

1/2s[d(hu,gu)d(hx2n,gu)]}. 

 Keeping Remark 2 in mind and by taking lim sup in (11) as n→∞,  

we find that  
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[d(z,gu)]
2
≤ ψ([d(z,gu)]

2
) < [d(z,gu)]

2
, 

a contradiction. 

Hence, we have [d(z,gu)]
2
 = 0 which gives that gu = z = hu.  

Using the similar reasoning, supposing that fu≠ z  

we have  

[d(fu,gx2n+1)]
2
 ≤ ψ(F(u,x2n+1)),                                                      (12)  

whereF(u,x2n+1)=max{[d(fu,gx2n+1)d(hu,fu)],[d(fu,gx2n+1)d(hx2n+1,gx2n+1)],[d(hx2n+1, fu)d(hu,gx2n+1)], 1/ 

2s[d(hx2n+1,gx2n+1)d(hu,gx2n+1)]}.  

Again, by taking Remark 2 into account and by letting lim sup in (12) as n→∞,  

[d(fu,z)]
2
 ≤ ψ([d(fu,z)]

2
) < [d(fu,z)]

2
, 

 which is a contradiction. 

Therefore, fu = z = hu = gu  

Using the similar reasoning, supposing that tu≠ z  

From (3) we have 

[d(fx2n,tu)]
2
 ≤ ψ(F(x2n,u)),                                (13) 

 where      F(x2n,u) = max{[d(fx2n,tu)d(hx2n, fx2n)],[d(fx2n,tu)d(hu,tu)] [d(hu, fx2n)d(hx2n,tu)], 

1/2s[d(hu,tu)d(hx2n,tu)]}. 

 Keeping Remark 2 in mind and by taking lim sup in (13) as n→∞,  

we find that  

[d(z,tu)]
2
≤ ψ([d(z,tu)]

2
) < [d(z,tu)]

2
, 

a contradiction. 

Therefore, fu = z = hu = gu =tu. 

 i.e., the maps f,g,h and t have a coincidence point. If we consider the supplementary assumption ,then the 

pairs(f,h) and (g,t),hare weakly compatible, we have 

 hgu = ghu ⇒ gz = hz 

 hfu = fhu ⇒ fz = hz, 
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tgh=gtu ⇒gz = tz 

thu=htu⇒ hz = tz 

 so t(z) = g(z) = f(z)=h(z).                                   (14) 

 

We shall show that z is the common fixed point of f,g ,h and t. Without loss of generality, suppose, on the 

contrary, that z≠ gz. Hence, by (3) we get  

[d(fx2n,gz)]
2
 ≤ ψ(F(x2n,z)),                 (15) 

 where F(x2n,z) = max{[d(fx2n,gz)d(hx2n, fx2n)],[d(fx2n,gz)d(hz,gz)], [d(hz, fx2n)d(hx2n,gz)], 

1/2s[d(hz,gz)d(hx2n,gz)]}. 

 By letting lim sup in (15) as n→∞, together with applying Remark 2, we find that 

 [d(z,gz)]
2
 ≤ ψ([d(z,gz)]

2
) < [d(z,gz)]

2
, a contradiction. 

 Thus, we have d(z,gz) = 0, that is, z = gz. By combining with (13) we get 

 fz = gz = hz = z which shows that z is a common fixed point of the mappings f,g and h. For the 

uniqueness,we suppose,on the contrary that f,g and h have two common fixed points z1 and z2 such that z1 

≠ z2. Then, by using (3) we get 

 [d(z1,z2)]
2
 = [d(fz1,gz2)]

2
ψ(F(fz1,gz2)),                                             (16) 

where 

F(fz1,gz2)=max{[d(fz1,gz2)d(hz1,fz1)],[d(fz1,gz2)d(hz2,gz2)][d(hz2,fz1)d(hz1,gz2)], 

1/2s[d(hz2,gz2)d(hz1,gz2)]}          

≤max{[d(z1,z2)d(z1,z1)],[d(z1,z2)d(z2,z2)] [d(z2,z1)d(z1,z2)], 1/ 2s[d(z2,z2)d(z1,z2)]} 

    ≤ [d(z1,z2)]
2
. Thus, (16) yields that 

[d(z1,z2)]
2
 = [d(fz1,gz2)]

2
ψ(F(fz1,gz2)) = ψ([d(z1,z2)]

2
) < [d(z1,z2)]

2
,                           (17) 

a contradiction that completes the proof. 

 

Conclusions 

We prove some common fixed-point theorems for four self-mappings to use possible assumptions for a 

comparison function in contractive conditions. 
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