ISSN: 2278-4632 Vol-10 Issue-5 No. 14 May 2020

A Review on Rectangular Microstrip Patch Antennas for Ultra-Wide Band

Applications

Mayank Sharma

Research Scholar, EEE, School of Engineering & Technology, Poornima University, Jaipur, India Email: msecajmer@gmail.com

Dr. Sunil Kumar Gupta

Professor, EEE, School of Engineering & Technology, Poornima University, Jaipur, India Email: sunil.gupta@poornima.edu.in

Abstract:

As the Federal Communications Commission (FCC) has approved the license free use (for short range & low power) of Ultra-Wide Band (3.1 GHz to 10.6 GHz) on 14th February, 2002, the UWB applications has shown the myriad of challenges and opportunities to researchers for designing of antennas for UWB applications. There are several challenges in designing of UWB Patch antenna. The first and primary requirement is that the proposed antenna should operate in specified UWB frequency band i.e. 3.1 GHz to 10.6 GHz completely. In addition to this it should have good radiation properties with time domain performance for entire proposed frequency band. The shape and geometry of the radiating patch and ground plane is the major concern for planar UWB antenna designs. Various methods like slotted patch, slotted ground, partial ground, modified feed, truncated corner patch, etc. have been used for increasing the bandwidth of patch antenna There are already several wireless standards which operate in the band of 3.1 to 10.6 GHz. These wireless standards includes WiMax (3.3-3.85 GHz), WLAN (5.15-5.85 GHz) and a portion of X band (8-12 GHz). SIW technology is utilized in microstrip patch antennas to increase gain and to improve the directivity of the structure.

Keywords: Ultra-Wide Band (UWB) antenna, Microstrip Patch Antenna (MPA), Substrate-Integrated Waveguide (SIW), bandwidth, band notched characteristics.

1. INTRODUCTION

For many practical antenna designs, the main disadvantage of microstrip patch antennas was low bandwidth and low gain. Many methods and techniques have been proposed to improve the bandwidth but slotting technique is the most popular because it enhances the impedance bandwidth and also reduces the size of the antenna. The alphabetical shapes of the patch are very

Juni Khyat

(UGC Care Group I Listed Journal)

ISSN: 2278-4632

Vol-10 Issue-5 No. 14 May 2020

famous in the antenna design. Different types of UWB antennas with and without band rejections are reported in the literature.

2. REVIEW OF LITERATURE

2.1 Microstrip Patch Antenna for Ultra-Wide Band Applications without Band Notched Characteristics

M. Ojaroudi proposed a novel printed monopole antenna which is usable for ultra-wide-band applications. Two slots of rectangular shape and one slot of T shape were inserted on patch and ground plane respectively which gives a bandwidth of more 120% (3.12-12.73 GHz).^[1]

M. Ojaroudi propounded a new antenna design which can be utilized for ultra-wide band applications. In the structure the authors has used one T slot and one inverted T slot on patch and ground respectively. It provides a bandwidth of more than 130% covering the frequencies between 2.91 GHz to 14.1 GHz. The author suggested that by using the two T slots on top and bottom of the structure additional resonances are excited and thus provides wide range of bandwidth especially at higher frequencies.^[2]

2.2 Microstrip Patch Antenna for Ultra-Wide Band Applications with Band Notched Characteristics

M. Mehranpour presented a square radiating patch on which a pair of L-shaped strip and an E-shaped slot in the centre of the patch was used. In the ground plane a V-shaped strip is placed and due to this strip more bandwidth is achieved even more than 140% (2.89-17.83 GHz). The L-shaped slits generate single band notched function and E-shaped slot in the centre generate dual band notched function.^[3]

M. Abdollahvand proposed a compact printed monopole antenna with dual band notched function for ultra-wide band applications. In this antenna, dual band notched function is achieved by a pair of I' - shaped stubs on the radiating patch and a G-shaped structure in the feed line. And on the ground plane by adding two I-shaped slots both the sides of microstrip feed, additional resonance are excited and bandwidth is increased to 123%.^[4]

www.junikhyat.com

ISSN: 2278-4632 Vol-10 Issue-5 No. 14 May 2020

M. Ojaroudi proposed a printed monopole antenna with band notched function with constant gain for UWB applications. The antenna consists of a ground plane and T-shaped strips in the radiating patch along with a Π - shaped strips and a strip in the ground plane which provides more bandwidth 130% (3.07-14.6 GHz). The T-shaped strip on the radiating patch generate frequency band stop performance like band notch frequency and bandwidth and these can be controlled by electromagnetically adjusting coupling between pair of T-shaped strips.^[5]

Nasser Ojaroudi presented a new design of monopole antenna with dual band notches for UWB applications. In this paper the radiating patch consist of a T-shaped slot in the feed line and ground plane consist of two E-shaped slots and a W-shaped conductor backed-plane. Due to E-shaped slot additional resonance are excited and wider bandwidth is achieved which is more than 130% (2.73-13.3 GHz). Single notch function is generated by W-shaped plane structure and dual band notch function is generated by T-shaped slot in the patch and feed line.^[6]

Qing-Xin Chu presented a compact printed ultra-wide band (UWB) monopole antenna with dual band-notched characteristics. By inserting two I-shaped notches in both sides of the microstrip feed line on the ground plane, additional resonances are excited, and hence the bandwidth is increased up to 123%. Two notched frequency bands are achieved by embedding a pair of (Γ) shaped stubs in the radiation patch and a modified G-slot defected ground structure in the feeding line. The designed antenna has a small size of 20.0 × 18.0 mm2 and operates over the frequency band between 2.8 and 11.8 GHz for VSWR < 2.0, with one notch frequency band at 3.3–3.8 GHz (WiMAX band) and the other at 5.1–6.0 GHz (WLAN band). The VSWR and radiation patterns of the fabricated antenna are presented, which prove that the designed antenna is a good candidate for various UWB applications.^[7]

Wen Tao Li proposed a new antenna that covers 3G, Bluetooth, WiMAX, and the UWB bands with dual band notched characteristics. Quasi complementary split ring resonator (CSRR) in the feed line is etched that achieve dual notched frequency bands at 5.3 GHz and 7.4 GHz, and lower resonance over 3G band is achieved by the transmission line based meta material.^[8]

Mohammad Ojaroudi presented a small printed monopole antenna with dual band notches for UWB applications. Ground plane is cut by a fork-shaped slit and due to this additional resonance is excited and wider bandwidth is achieved. A U-shaped strip on the radiating patch is used to

www.junikhyat.com

ISSN: 2278-4632 Vol-10 Issue-5 No. 14 May 2020

generate dual band notched function. This antenna covers all the 5.5/5.8-GHz WLAN, 3.5/5.5-GHz WIAAX, and 4.0-GHz C-bands.^[9]

J. Xu a small novel ultra wideband (UWB) antenna with dual band-notched functions. The dual band rejection is achieved by etching two C-shaped slots on the radiation patch with limited area. A single band-notched antenna is firstly presented, and then an optimized dual band-notched antenna is presented and analyzed. The measured VSWR shows that the proposed antenna could operate from 3.05 to 10.7 GHz with VSWR less than 2.0, except two stop bands at 3.38 to 3.82 GHz and 5.3 to 5.8 GHz for filtering the WiMAX and WLAN signals. Radiation patterns are simulated by HFSS and verified by CST, and quasi omnidirectional radiation patterns in the H-plane could be observed. Moreover, the proposed antenna has a very compact size and could be easily integrated into portable UWB devices.^[10]

A. Ghazi proposed a modified square monopole antenna with multi-resonance performance, for UWB applications. The proposed antenna consists of a square radiating patch with a pair of T-shaped slots and a ground plane with a pair of rectangular sleeve and a T-shaped resonator which provides a wide usable fractional bandwidth of more than 125% (3.05-13.57 GHz). By optimizing dimension of rectangular sleeves, T-shaped slots and resonator, the total bandwidth of the antenna is greatly improved. The designed antenna has a small size of 14.0×22.0 mm2. Good return loss and radiation pattern characteristics are obtained in the frequency band of interest. Simulated and experimental results are presented to demonstrate the performance of a suggested antenna.^[11]

S. Yazdanifard proposed a novel printed monopole antenna for ultra wideband applications with variable frequency band-notch characteristic. The proposed antenna consists of a stepped square radiating patch with modified W-shaped slot and a ground plane with rectangular sleeve and pair of L-shaped resonator which provides a wide usable fractional bandwidth of more than 130% (3.05-14.3 GHz). By cutting a modified W-shaped slot with variable dimensions on the radiating patch frequency band-stop performance is generated and it can control its characteristics such as band-notch frequency and its bandwidth. The designed antenna has a small size of 12.0×18.0 mm2 while showing the band rejection performance in the frequency band of 5.08 to 5.91 GHz.^[12]

www.junikhyat.com

ISSN: 2278-4632 Vol-10 Issue-5 No. 14 May 2020

M. Ojaroudi presented a novel printed monopole antenna (PMA) for ultra wideband (UWB) applications with variable frequency band-notch characteristic. The proposed antenna consists of a stepped square radiating patch with two U-shaped slots and a notched ground plane with a T-shaped sleeve that provides a wide usable fractional bandwidth of more than 140% (2.85–16.73 GHz). By cutting two modified U-shaped slots with variable dimensions on the radiating patch, frequency band-stop performance is generated, and it can control its characteristics such as band-notch frequency and its bandwidth. The designed antenna has a small size of 12.0×19.0 mm2 while showing the band rejection performance in the frequency band of 5.02-5.97 GHz.^[13]

Nasser Ojaroudi presented a novel printed monopole antenna for ultra wideband applications with dual band-notched function. The antenna consists of a square radiating patch with an inverted T-shaped ring slot, surrounded by a C-shaped slot, which provides a wide usable fractional bandwidth of more than 125% (2.71–12.06 GHz). In this structure, by cutting an inverted T-shaped slot, the impedance bandwidth is effectively improved at the upper frequency. In order to generate single band-notched characteristics, the author used an inverted T-shaped slot, surrounded by a C-shaped slot, in the radiating patch. By adding an inverted T-shaped parasitic structure inside the inverted T-shaped slot on the radiating patch, a dual band-notched function is achieved, and also by inserting this parasitic structure, additional resonance is excited, and hence much wider impedance bandwidth can be produced, especially at the higher band. The measured results reveal that the presented dual band-notch monopole antenna offers a wide bandwidth with two notched bands, covering all the 5.2/5.8-GHz WLAN, 3.5/5.5-GHz WiMAX, and 4.0-GHz C-bands. The designed antenna has a small size of $12.0 \times 18.0 \times 0.8$ mm³.^[14]

M. Ojaroudi proposed a new band-notched tapered monopole antenna for ultra-wideband applications. The antenna structure is etched on a 1.0 mm-FR4 epoxy substrate with dielectric constant $\varepsilon_r = 4.4$. The ground plane and radiating patch are tapered to obtain good wide impedance matching performance. Inserting two slots in the ground plane causes to greatly widen the impedance bandwidth. By embedding a folded trapezoid in an inner hole of the patch, the band-notch function can be achieved. The fabricated antenna has a small size of 18.0×20.0 mm2 and operates over the frequency band between 3.0 to 13.0 GHz for VSWR < 2.0, rejecting the undesired frequency band from 5.1 to 5.85 GHz.^[15]

2.3 Microstrip Patch Antenna using SIW Technology

Page | 396

www.junikhyat.com

ISSN: 2278-4632 Vol-10 Issue-5 No. 14 May 2020

Many researchers have used Substrate-Integrated Waveguide (SIW) technology either to increase the gain or to confine the directivity for specific applications. This technology is a way to make efficient connection between planar and non-planar structures. By means of using SIW the electromagnetic energy is guided to the radiating patch beneath the microstrip line in the dielectric substrate. This increases the gain of the structure and it also narrows down the radiation pattern and thus improves the directivity. SIW is he technique of inserting metallic vias or empty periodic cylindrical structures in the substrate.^[16-20]

3. METHODOLOGY

Most of the researchers have proposed slotting either on the radiating patch or on the partial / truncated ground plane. By virtue of partial ground plane, bandwidth enhancement is achieved whereas with the help of slotting on the radiating patch band rejection (s) or additional improvement in the bandwidth is achieved. The detailed comparison of the reviewed literature is shown in table 1.

Published Literature	Key Issue	Solution Approach/ Methodology used	Results	Limitations
Ref. [1]	Covers entire said UWB specified by US-FCC	Two rectangular slots on radiating patch and T notch on ground plane gives additional bandwidth so that it is greater than 7.5 GHz	Provides wide usable bandwidth more than 120% (3.12-12.73 GHz)	Interference from the nearby interfering bands lying within the UWB frequency range.

Table 1: Microstrip Patch Antennas for UWB Applications with and without Band Notched Characteristics.

Juni Khyat (UGC Care Group I Listed Journal)			ISSN: 2278-4632 Vol-10 Issue-5 No. 14 May 2020	
Ref. [2]	Covers entire said UWB specified by US-FCC	One T slot and one inverted T slot on patch and ground respectively is used to provide 7.5 GHz bandwidth	Provides wide bandwidth of more than 130% (2.91-14.1 GHz)	Interference from the nearby interfering bands lying within the UWB frequency range.
Ref. [3]	Covers entire said UWB specified by US-FCC dual band rejections	A pair of L-shaped strip and an E-shaped slot in the centre of the patch is presented, also in the ground plane a V-shaped strip is placed	Due to this strip more bandwidth is achieved even more than 140% (2.89-17.83 GHz). The L-shaped slits generate single band notched function and E-shaped slot in the centre generate dual band notched function	Interference from the nearby interfering bands lying within the UWB frequency range as only two bands are rejected
Ref. [4]	Covers entire said UWB specified by US-FCC dual band rejections	In this antenna dual band notched function is achieved by a pair of I - shaped stubs on the radiating patch and a G-shaped structure in the feed line. And on the ground plane by adding two I-shaped slots both the sides of microstrip feed,	Bandwidth is increased to 123%	Interference from the nearby interfering bands lying within the UWB frequency range as only two bands are rejected

Juni Khyat (UGC Care Group I Listed Journal)		ISSN: 2278-4632 Vol-10 Issue-5 No. 14 May 2020		
		additional resonance are excited		
Ref. [5]	Covers entire said UWB specified by US-FCC dual band rejections	The proposed antenna consists of a ground plane and T-shaped strips in the radiating patch and also a П- shaped strips and a strip in the ground plane	Provides more bandwidth 130% (3.07- 14.6 GHz). The T- shaped strip on the radiating patch generate frequency band stop performance like band notch frequency and bandwidth and these can be controlled by electromagnetically adjusting coupling between pair of T- shaped strips.	Interference from the nearby interfering bands lying within the UWB frequency range as only two bands are rejected
Ref. [6]	An antenna which can cover entire said UWB specified by US-FCC with dual band rejections	Radiating patch consists of a T-shaped slot in the feed line and ground plane consist of two E-shaped slots and a W-shaped conductor backed-plane. Due to E-shaped slot additional resonance are excited and wider bandwidth is achieved	Wider bandwidth is achieved which is more than 130% (2.73-13.3 GHz). Single notch function is generated by W-shaped plane structure and dual band notch function is generated by T-shaped slot in the patch and feed line.	Interference from the nearby interfering bands lying within the UWB frequency range as only two bands are rejected
Ref. [7]	An antenna which can cover entire	By inserting two I- shaped notches in both sides of the microstrip	The designed antenna has a small size of 20.0 × 18.0 mm2 and	Interference from the nearby

Page | 399

www.junikhyat.com

Juni Khyat (UGC Care Group I Listed Journal)			ISSN: 2278-4632 Vol-10 Issue-5 No. 14 May 2020	
	said UWB feed line on the ground		operates over the	interfering
	specified by	plane, additional	frequency band	bands lying
	US-FCC	resonances are excited,	between 2.8 and 11.8	within the
	with dual	and hence the	GHz for VSWR < 2.0 ,	UWB
	band	bandwidth is increased	with one notch	frequency
	rejections	up to 123%. Two	frequency band at 3.3–	range as only
		notched frequency	3.8 GHz (WiMAX	two bands are
		bands are achieved by	band) and the other at	rejected
		embedding a pair of tau	5.1–6.0 GHz (WLAN	
		shaped stubs in the	band). The VSWR and	
		radiation patch and a	radiation patterns of the	
		modified G-slot	fabricated antenna are	
		defected ground	presented, which prove	
		structure in the feeding	that the designed	
		line.	antenna is a good	
			candidate for various	
			UWB applications.	
Ref. [8]	An antenna which can cover entire said UWB specified by US-FCC with dual band rejections	A new antenna is presented that covers 3G, Bluetooth, WiMAX, and the UWB bands with dual band notched characteristics. Quasi complementary split ring resonator (CSRR) in the feed line is etched	Dual notched frequency bands at 5.3 GHz and 7.4 GHz, and lower resonance over 3G band is achieved by the transmission line based meta material.	Interference from the nearby interfering bands lying within the UWB frequency range as only two bands are
	A		771.:	rejected
Dof [0]	An antenna	Ground plane is cut by	This antenna covers all	Interference
Ref. [9]	which can cover entire	a fork-shaped slit and due to this additional	the 5.5/5.8-GHz WLAN, 3.5/5.5-GHz	from the nearby
			,, Lin, 5.5/5/5 OHL	neuroy

Page | 400

www.junikhyat.com

Juni Khyat (UGC Care Group I Listed Journal)			ISSN: 2278-4632 Vol-10 Issue-5 No. 14 May 2020	
	said UWB resonance is excited		WiMAX, and 4.0-GHz	interfering
	specified by	and wider bandwidth is	C-bands.	bands lying
	US-FCC	achieved. A U-shaped		within the
	with dual	strip on the radiating		UWB
	band	patch is used to		frequency
	rejections	generate dual band		range as only
		notched function		two bands are
				rejected
		The dual band rejection	The measured VSWR	Interference
	An antenna	is achieved by etching	shows that the	from the
	which can	two C-shaped slots on	proposed antenna could	nearby
	cover entire	the radiation patch with	operate from 3.05 to	interfering
	said UWB	limited area. A single	10.7 GHz with VSWR	bands lying
Ref. [10]	specified by	band-notched antenna	less than 2.0, except	within the
	US-FCC	is firstly presented, and	two stop bands at 3.38	UWB
	with dual	then an optimized dual	to 3.82 GHz and 5.3 to	frequency
	band	band-notched antenna	5.8 GHz for filtering	range as only
	rejections	is presented and	the WiMAX and	two bands are
		analyzed.	WLAN signals.	rejected
		radiating patch consist	Wider bandwidth is	Interference
	An antenna	of a T-shaped slot in	achieved which is more	from the
	which can	the feed line and	than 130% (2.73-13.3	nearby
	cover entire	ground plane consist of	GHz). Single notch	interfering
	said UWB	two E-shaped slots and	function is generated	bands lying
Ref. [11]	specified by	a W-shaped conductor	by W-shaped plane	within the
	US-FCC	backed-plane. Due to	structure and dual band	UWB
	with dual	E-shaped slot	notch function is	frequency
	band	additional resonance	generated by T-shaped	range as only
	rejections	are excited and wider	slot in the patch and	two bands are
		bandwidth is achieved	feed line.	rejected
Ref. [12]	An antenna	By inserting two I-	The designed antenna	Interference

Juni Khyat (UGC Care Group I Listed Journal)			ISSN: 2278-4632 Vol-10 Issue-5 No. 14 May 2020	
	which can	shaped notches in both	has a small size of 20.0	from the
	cover entire	sides of the microstrip	\times 18.0 mm2 and	nearby
	said UWB	feed line on the ground	operates over the	interfering
	specified by	plane, additional	frequency band	bands lying
	US-FCC	resonances are excited,	between 2.8 and 11.8	within the
	with dual	and hence the	GHz for VSWR < 2.0,	UWB
	band	bandwidth is increased	with one notch	frequency
	rejections	up to 123%. Two	frequency band at 3.3–	range as only
		notched frequency	3.8 GHz (WiMAX	two bands are
		bands are achieved by	band) and the other at	rejected
		embedding a pair of	5.1–6.0 GHz (WLAN	
		tau shaped stubs in the	band). The VSWR and	
		radiation patch and a	radiation patterns of the	
		modified G-slot	fabricated antenna are	
		defected ground	presented, which prove	
		structure in the feeding	that the designed	
		line.	antenna is a good	
			candidate for various	
			UWB applications.	
		A new antenna is		Interference
	An antenna	presented that covers		from the
	which can	¹ 3G, Bluetooth,	Dual notched	nearby
	cover entire	WiMAX, and the UWB	frequency bands at 5.3	interfering
	said UWB	bands with dual band	GHz and 7.4 GHz, and	bands lying
Ref. [13]	specified by	notched characteristics.	lower resonance over	within the
	US-FCC	Quasi complementary	3G band is achieved by	UWB
	with dual		the transmission line	frequency
	band	band rejections split ring resonator (CSRR) in the feed line is etched	based meta material.	range as only
	rejections			two bands are
		15 Etcheu		rejected
Ref. [14]	An antenna	Ground plane is cut by	This antenna covers all	Interference

Juni Khyat (UGC Care Group I Listed Journal)			ISSN: 2278-4632 Vol-10 Issue-5 No. 14 May 2020	
	which can	a fork-shaped slit and	the 5.5/5.8-GHz	from the
	cover entire	due to this additional	WLAN, 3.5/5.5-GHz	nearby
	said UWB	resonance is excited	WiMAX, and 4.0-GHz	interfering
	specified by	and wider bandwidth is	C-bands.	bands lying
	US-FCC	achieved. A U-shaped		within the
	with dual	strip on the radiating		UWB
	band	patch is used to		frequency
	rejections	generate dual band		range as only
		notched function		two bands are
				rejected
		The dual band rejection	The measured VSWR	Interference
	An antenna	is achieved by etching	shows that the	from the
	which can	two C-shaped slots on	proposed antenna could	nearby
	cover entire	the radiation patch with	operate from 3.05 to	interfering
	said UWB	limited area. A single	10.7 GHz with VSWR	bands lying
Ref. [15]	specified by	band-notched antenna	less than 2.0, except	within the
	US-FCC	is firstly presented, and	two stop bands at 3.38	UWB
	with dual	then an optimized dual	to 3.82 GHz and 5.3 to	frequency
	band	band-notched antenna	5.8 GHz for filtering	range as only
	rejections	is presented and	the WiMAX and	two bands are
		analyzed.	WLAN signals.	rejected
				Fabrication is a
	Integration of	SIW is a bridge between planar and non	Gain and directivity of the antenna is	bit complex and measured
Ref. [16]	cascaded	planar device to reduce	improved. Front to	results deviates
	SIW filter and MSA	the volume of the	back ratio of the	due to non
		structure	antenna is narrowed.	ideal
				environmental
				conditions.
Ref. [17]	MSA using	SIW is a bridge	Gain and directivity of	Fabrication is a
L . J	SIW	between planar and non	the antenna is	bit complex

Juni Khyat (UGC Care Group I Listed Journal)			ISSN: 2278-4632 Vol-10 Issue-5 No. 14 May 2020		
	technology	planar device to reduce	improved. Front to	and measured	
		the volume of the	back ratio of the	results deviates	
		structure	antenna is narrowed.	due to non	
				ideal	
				environmental	
				conditions.	
				Fabrication is a	
				bit complex	
		Using ESIW around	ESIW is less complex	and measured	
D ([10]	MSA using	the feed line the energy	SIW technique by	results deviates	
Ref. [18]	ESIW for 5G	is confined to the	which Gain and	due to non	
	applications	substrate	directivity of the	ideal	
			antenna is improved.	environmental	
				conditions.	
				Fabrication is a	
	MCA using		Coin and directivity of	bit complex	
	MSA using QMSIW for WLAN / WBAN applications	Using QMSIW the size of the overall microwave	Gain and directivity of the antenna is improved. Front to back ratio of the antenna is narrowed.	and measured	
Dof [10]				results deviates	
Ref. [19]				due to non	
				ideal	
				environmental	
				conditions.	
				Fabrication is a	
			Gain and directivity of	bit complex	
	CIVI A stores	SIW is bridge between		and measured	
Dof [20]	SIW Antenna	planar and non planar	the antenna is	results deviates	
Ref. [20]	for 5G applications	device to reduce the	improved. Front to back ratio of the antenna is narrowed.	due to non	
		volume of the structure		ideal	
				environmental	
				conditions.	

Page | 404www.junikhyat.com

Juni Khyat (UGC Care Group I Listed Journal) 4. STRENGTHS

Most of the reviewed antenna designs are planar and less complex which is most important for the ease of fabrication. The frequency bands of rejections can be shifted by changing the dimensions and positions of the slots which in terms changes the capacitance at that point. SIW reduces the losses which in term enhances the gain.

5. CONCLUSIONS

In this paper, a review on microstrip patch antennas for ultra-wide band applications with & without band notched characteristics along with the SIW technology is presented. It was found that, the design should be simple so that the fabrication of the structure is easy. In addition to this, band rejections can be achieved by using slotting techniques in different shapes whereas partial ground plane is used enhancing the bandwidth.

REFERENCES

- [1] Mohammad Ojaroudi, Changiz Ghobadi, and Javad Nourinia "Small Square Monopole Antenna with Inverted T-Shaped Notch in the Ground Plane for UWB Application" *IEEE Antennas and Wireless Propagation Letters*, VOL. 8, pp. 728-731, 2009.
- [2] M. Ojaroudi, Sh. Yazdanifard, N. Ojaroudi, and M. Naser-Moghaddasi, "Small Square Monopole Antenna With Enhanced Bandwidth by Using Inverted T-Shaped Slot and Conductor-Backed Plane" *IEEE Transaction on Antennas and Propagation*, VOL. 59, NO. 2, pp. 670-674, February 2011.
- [3] M. Mehranpour, J. Nourinia, Ch. Ghobadi, and M. Ojaroudi, "Dual Band-Notched Square Monopole Antenna for Ultrawideband Applications" IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 11, 2012.
- [4] M.Abdollahvand, G.Dadashzadeh and D.Mostafa, "Compact Dual Band-notched Printed Monopole Antenna for UWB Application, *IEEE Antennas and Wireless Propagation Letters*, Vol.9,2010.
- [5] M. Ojaroudi, Sh. Yazdanifard, N. Ojaroudi, and R. A. Sadeghzadeh, "Band-Notched Small Square-Ring Antenna With a Pair of T-Shaped Strips Protruded Inside the Square Ring for

Juni Khyat

ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-5 No. 14 May 2020 UWB Applications" IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 10, 2011.

- [6] N. Ojaroudi, M. Ojaroudi, Sh. Yazdanifard and R. A. Sadeghzadeh, "Dual Band-Notched Small Monopole Antenna With Novel W-Shaped Conductor Backed-Plane and Novel Tshaped Slot for UWB Applications" IET Microwaves, Antennas & Propogation, VOL. 7, pp. 8-14, 2013.
- [7] Qing-Xin Chu and Ying-Ying Yang, "A Compact Ultra wideband Antenna With 3.4/5.5 GHz Dual Band-Notched Characteristics", *IEEE Trans. Antennas and Propag.*,vol.56,pp.3637-3644, Dec. 2008.
- [8] Wen Tao Li, Yong Qiang Hei, Wei Feng, and Xiao Wei Shi, "Planar Antenna for 3G/Bluetooth/WiMAX and UWB Applications with Dual Band-Notched Characteristics" IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 11, pp. 61-64, 2012.
- [9] Mohammad Ojaroudi, Nasser Ojaroudi, and Noradin Ghadimi, "Dual Band-Notched Small Monopole Antenna With Novel Coupled Inverted U-Ring Strip and Novel Fork-Shaped Slit for UWB Applications" IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 12, pp. 182-185, 2013.
- [10] J. Xu, D.-Y. Shen, G.-T.Wang, X.-H. Zhang, X.-P. Zhang and K.Wu, "A Small UWB Antenna with Dual Band-Notched Characteristics" International Journal of Antennas and Propagation, Volume 2012, Article ID 656858, 7 pages, doi:10.1155/2012/656858.
- [11] A. Ghazi and M. N. Azarmanesh, "Multi-Resonance Square Monopole Antenna For Ultra-Wideband Applications" Progress In Electromagnetics Research C, Vol. 14, pp. 103-113, 2010.
- [12] Yazdanifard, Sh, Sadeghzadeh, R. A., & Ojaroudi, M., "Ultra-wideband small square monopole antenna with variable frequency band-notch function" Progress in Electromagnetics Research C, Vol. 15, pp. 133-144, 2010.
- [13] M. Ojaroudi, G. Ghanbari, N. Ojaroudi, and C. Ghobadi, "Small Square Monopole Antenna for UWB Applications With Variable Frequency Band-Notch Function" IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 8, pp. 1061-1064, 2009.
- [14] Nasser Ojaroudi and Mohammad Ojaroudi, "Novel Design of Dual Band-Notched Monopole Antenna With Bandwidth Enhancement for UWB Applications" IEEE
 Page | 406 www.junikhyat.com Copyright © 2020 Authors

Juni Khyat

ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-5 No. 14 May 2020 ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 12, pp. 698-701, 2013.

- [15] Ojaroudi M., "Printed monopole antenna with a novel band-notched folded trapezoid for ultra-wideband applications", J. Electromagn. Waves Appl. (JEMWA), Vol. 23, pp. 2513-2522, 2009.
- [16] Z.Zakaria, W.Y.Sam, M.Z. Abd aziz and M.Muzafar Ismail, "The Integration of Rectangular SIW Filter and Microstrip Patch Antenna Based on Cascaded Approach" Procedia Engineering, 53, pp. 347-353, 2013.
- [17] Nouri Keltouma and Damou Mehdi, "Design of substrate integrated Waveguide single longitudinal slot antenna" International Journal of Engineering Research & Technology (IJERT), ISSN: 2278-0181, Vol. 2 Issue 11, pp. 794-797, November – 2013.
- [18] Zia Ullah Khan, Syeda Fizzah Jilani, Angel Belenguer, Tian Hong Loh and Akram Alomainy, "Empty Substrate Integrated Waveguide-Fed MMW Aperture-Coupled Patch Antenna for 5G Applications" IET Digital Library, 2018.
- [19] Divya Chaturvedi and Singaravelu Raghavan, "Compact QMSIW Based Antennas for WLAN/WBAN Applications" Progress In Electromagnetics Research C, Vol. 82, pp. 145– 153, 2018.
- [20] P. S. Nair, A. Patnaik and M. V. Kartikeyan, "Millimeter Wave SIW Antenna for 5G Applications," 2018 IEEE Indian Conference on Antennas and Propogation (InCAP), Hyderabad, India, doi: 10.1109/INCAP.2018.8770870, 2018.
- [21] Federal communications commission (FCC) "FCC NOI: Rules Regarding ultra wideband transmission systems", ET Docket No.98-153, Sept.1998.
- [22] Antenna theory: analysis and design, Constantine A. Balanis, third edition, Hoboken, NJ: Wiley, 2005, ISBN 047166782X (hbk.).