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The main difficult in computer modeling is getting numerical results from computational 
heavyweight models for large input parameters sets. This problem arises when researchers need to 
get exact outcomes for data conception. For instance, execution of a simulation model on thousands 
of input parameters combinations can take days or weeks.  In this article we describe an architecture 
of a distributed system which allows to run computations in parallel on large  input  Basing on 
performance we  may consider two models simulation model and of a wireless network 

To show the performance gain, we consider two models: simulation model of a wireless network 
implemented in NS-3 and analytical model of a complex queuing system written in Python, and 
demonstrate the increase of computation speed. 

 

Key words and phrases: architecture of a distributed system ,computer science, parallel tasks 

execution, simulation model. 

 

 

1. Introduction 

In research work we often find ourselves in a situation when we need to get numerical results from a model 
or algorithm on a large set of input parameters. These models and algorithms can be rather complex and 
require lots of time and computational resources. For instance, simulation model of computer network may 
require several minutes to properly estimate average network throughput or packet loss probability. If we 
need to study dependencies between these characteristics and input parameters, we may need to run the 
simulation on a set of several hundreds or even thousands of parameters values, and this will take many 
days or weeks. 

One of the most effective approaches to improving performance is the use of parallel computing. Basically, 
there are two ways to make use of multiple CPUs in computations. The first one is called program (or 
function) parallelism. According to this approach, the algorithm should be developed in such a way that 
different parts can be executed in parallel by different threads. If several threads need to be executed in the 
same time, each of them can use separate CPU (of course, if there are enough CPUs). However, not all 
algorithms may utilize parallelism effectively, and also this approach require algorithm rethinking and lots 
of manual work. The second way to use multiple CPUs is to simultaneously execute several instances of 
the same program with different input data on separate CPUs. This approach is more simple and universal, it 
doesn’t require parallelism inside each program. To implement this approach, we developed a system for 
distributed computations, which we describe in this paper. The system provides an intuitive Web interface 
for users, as well as REST API, and can be used for a very wide range of computational tasks. 

As an example, we consider two computational problems: performance evaluation of a wireless network 
using NS-3 simulation model, and computation of numerical solution of a complex queuing system 
analytical model (implemented in Python language). We studied time required for getting numerical 
solutions of each problem on one hundred of different input vectors, depending on the number of worker 
threads used by our distributed system, and workers properties. We found that under certain conditions 
the system allows to effectively use all CPUs and decrease the time required for the problem solution 
proportionally to the number of threads. 

The paper is organized as follows. In the second part we provide a brief overview of related works 
and outline the key differences of our approach. In the third part we describe the system architecture. 
Part 4 is devoted to details on tasks execution, and part 5 presents numerical results obtained on the 
sample problems. Part 6 concludes the paper. 

 

2. Related Works 

A similar problem of computing tasks on a large number of inputs was considered in articles [1–4]. In 
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these articles web application for running calculations jobs called Everest [5] was described. The application 
has user-interface, where user can input parameters of computed job. After that, jobs are deployed and 
computed on services connected to the system. 

The system Nimrod [6, 7] is the tool for planed computing. User can create a plan for an experiment 
and use the system to dispatch the tasks over multiple computing resources and collect the results. To 
configure tasks scheduling user creates declarative “plan” file which describes the parameters, then system 
schedules this job on the first available service connected to the system. 

There are a lot of differences in implementation between our system and Everest or Nimrod. The key 
different is the process of tasks and environment preparation. Our system uses Docker to support all 
kind of tasks independently of infrastructure. All executable tasks are wrapped into Docker containers. 
To start running, a server with workers need only Docker installed and the Supervisor which is a part of 
our platform. 

 

3. System Architecture 

The main goal of the distributed system is to simplify programs executions on large input data sets. It 
should be a user-friendly application for running and managing tasks, provide means for storing input 
parameters, results and tasks execution statistics. The application should satisfy the following requirements: 

— support various kinds of tasks, e.g. running computer networks simulations, perfor- mance evaluation of 
stochastic models, optimization problems solving, evaluation of physical and economical numerical 
models, running machine learning algorithms and so on; 

— provide user-friendly interface, where user can control tasks and track execution status; 
— provide means for system configuration, including the number of workers (pro- cesses for tasks 

execution); 
— store results; 
— the system deployment should be as easy as possible. 

The distributed system includes a web application and computational core.  The web application 
contains a frontend and backend. It also includes SQL database (Post- greSQL) for parameters and results 
storage, and Redis queue to move tasks between services. The client part of application (frontend) is 
written in JavaScript language using React framework. In the server side of application we used Python 
language and Fast API framework. The client side interacts with the server via HTTP requests and 
websockets. 

Computational core includes a separate service called Supervisor, which manages a pool of Workers. 
The count of Workers depends on the number of CPUs. As a rule of thumb, a CPU should be allocated 
for each worker. The task processing workflow is illustrated in Fig. 1. 

 

Figure 1. System workflow for handling and execution of tasks 

 

 

 

4. Tasks management and execution 

As previously mentioned, the main goal of the system is to solve computational problems on a large 
number of input values sets. To describe the problem, user should prepare a JSON array, where each 
item is a set of input values that correspond to a separate computational task. After JSON file is 
uploaded via UI into system or REST API, the problem is decomposed by the backend side into tasks. 
These tasks are inserted into Redis queue, from which they can be received by the computational core. 
Supervisor pulls the task from the queue, creates a worker and begins task execution. 

The task life cycle is as follows. After creation the task is inserted into database with status 
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INITIALIZED. In the first stage, the task is appended to the queue and receives status IN_QUEUE. 
When the Supervisor finds that task queue isn’t empty, it checks whether any worker is ready for a new 
task. Each worker can be either free, or busy. In free state the worker is waiting for a task and doesn’t 
consume CPU resources. In busy state the worker executes a task. After one of the worker becomes free, 
Supervisor pulls a task from the queue and assigns this task to the free worker. Then task status becomes 
RUNNING. After execution was completed and result is saved into the database, task status is changed 
to COMPLETED. In case when execution completed with error, diagnostic information is saved into 
database and task status is set to ERROR. 

 

 

Figure 2. Task status change during execution 

 

 
The system should support any kind of computational tasks. However, different tasks require unique 

environments for execution. For example, network simulation model may require a C++ compiler and NS-
3 framework, Machine Learning tasks require Python interpreter and statistical libraries. The obvious 
solution is to customize environment for each individual problem, but it is not the best option since it 
comes with lots of overhead work. To solve this problem in a more universal and easy way, we 
decided to use Docker containers technology. User should define a Dockerfile, build docker image, 

upload it to online container registry and pass the image URL when submitting a new problem. Before 
the worker starts task execution, the system pulls docker image. Worker creates a container from the 
image and executes it.   Thus each task can be seen as a Docker container. After the execution is over, 
worker writes results into the database and removes the container. 

 

Figure 3. Problem execution workflow 

 

 

 

5. Results 

To show the system performance we carried out experiments with simulation model of a wireless 
tandem network implemented in NS-3 and analytical model of a queuing system written in Python. All 
computations were performed on a virtual server at Yandex Cloud service with 16 vCPUs, 64 Gb RAM, 
running Ubuntu OS v20.04. 

The input parameters of the simulation model consist of the IEEE 802.11 protocol settings, number 
of packets to generate, stations positions, antennas gain and transmit- ters power. The input parameters 
of analytical model include queue capacity, number of servers, parameters of inter-arrival and service 
times distributions. For both cases we created data sets consisting of 100 tasks. We packed tasks into 
problems (JSON input files) for each case and measured how long did it take to execute depending on 
the number of workers. 

According to theoretical calculations, if problem execution on 1 worker takes T1 
time, then time of execution on n workers Tn equals: 

T  = 
T1 + δ 
n 

 

(k),

 

(1) 

n 
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where δn is a total time of side effects: getting task from queue, start docker container, complete docker 
container and write results into database. Generally, δn(k) depends on the number of tasks k in the queue. 
Equation (1) is precise only when each task is computed on one vCPU and the number of workers is less 
or equal to vCPUs count. Otherwise, if the number of workers is more than vCPUs count or workers use 
multiple threads, equation (1) doesn’t provide a good measure, since workers interfere with each other for 
vCPU time and computational time is increased. To demonstrate this effect we used a multithreaded 
library for matrix operations in analitycal model, but set limits on the number of vCPUs each Docker 
container could use. 

Fig. 4 shows the dependency between time required to solve the problem and the number of workers for 
three cases: analytical model without limits on the number of vCPUs for each worker, analytical model with 
4 vCPUs per worker and NS-3 simulation model, which uses one vCPU per worker. For simulation model 
the global minimum is achieved when the number of workers is equal to sixteen – the number of vCPUs 
in the system. In case of analytic model with four threads per worker, time is almost the same starting 
from four workers (when all 16 vCPUs are busy), but slightly decreases till the number of workers grows 
up to 16. As for analytic model without limits on vCPUs usage by workers, increase in the number of 
workers doesn’t accelerate the overall execution. Moreover, problem solution time is even increased due to 
overhead caused by the concurrent access to vCPUs by multiple threads. 

 

 
 

Figure 4. Time execution dependently on workers count 

 

 

6. Conclusion 

In this paper we described the problem of getting numerical results for problems with large number of 
input parameters sets. Usually, when one needs to get numerical results of computational heavy problems 
on thousands of different input sets, it requires lots of time and computational resources, up to days or 
weeks. As a solution of this problem, we proposed a system for running several instances of program in 
parallel. The system includes a web application with user interface, backend, SQL and Redis databases, 
and computational core comprised of Supervisor and worker processes. To unify the problem specification 
environment, the system expects computational problems in the form of Docker images accepting JSON 
inputs and producing JSON outputs. We studied the decrease of time needed to solve the problem on 
two kinds of problems: analytical solution of a multi-server queueing model with priorities and wireless 
network simulation in NS-3. Our experiments show, that while generally our systems allows to decrease 
time approximately like 1/n, where n is the number of workers, in some cases when executables in 
Docker containers use multithreaded libraries, there is no performance gain, so limiting the number of 
CPUs per worker is required. 

The system presented in this paper is a work in progress. We plan to add many fea- tures: integrations 
with popular cloud platforms (Yandex Cloud, Vscale, Digital Ocean, Amazon AWS, etc.) to automate 
computational core deployment, dynamic resource al- location and scheduling, user and API 
authentication. We also plan to improve UI/UX, add statistic and monitoring dashboards. Finally, we 
plan to build accurate mathemati- cal models for expected execution time estimation and dynamic 
computational resources allocations. 

Source code of the system is available at https://gitlab.com/lab69/multi-runner. 
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