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ABSTRACT 

This paper presents an energy-efficient local path planner for unidirectional battery-

powered mobile robot navigation in dynamic situations. The suggested technique adds a 

cost function based on energy usage to the Dynamic Window Approach (DWA). An on-

the-fly trained linear regression model is used to forecast the projected energy usage 

during planning. On a mobile robot platform, empirical findings demonstrate a 9.79% 

reduction in energy usage compared to the DWA technique.  
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1. INTRODUCTION 

Energy efficiency is a major goal for any technical system. Challenges like global 

warming and sparsity of fuel sources increase the importance of this topic. In the 

context of a mobile robot as a product, this goal has to be transformed into the 

economic system as described by Luhmann (1994). It is possible to transfer this into a 

more product focused interest: Energy efficiency leads to battery power saving. A 

system that drains less current from its battery can potentially run longer. The aspect 

of an increased battery life is a competitive advantage. 

This paper focuses on energy efficiency in robot naviga- tion. The topic of path planning 

is well studied from a theoretical point of view. This led for example to the popular 

graph search algorithms like A* Hart et al. (1968) and Dijkstra Dijkstra (1959). The 

practical use of path planning for omni-directional mobile robots demands the additional 

consideration of energy efficiency as an opti- mization criterion. A short path length is 

necessary for an energy efficient route but it is not sufficient because the energy 

consumption also depends on the velocity profile. 

A practical approach is the analysis of motor control in terms of energy efficiency by 

Trzynadlowski (1988); Barili et al. (1995); Sheta et al. (2009); Zhao et al. (2013).  

Similar studies on non  mobile  robotic  arms  are:  Katoh et al. (1994); Shiller (1996); 

Verscheure et al. (2008). In contrast, this approach considers energy efficiency on a 

higher level of robot motion as mobile robot navigation  has a higher dimensional search 

space which needs to be considered. The additional dimensions are based on the 

mobility of the robot. Kim and Kim conducted research on energy-efficient solely 

transitory trajectories for three omniwheeled robots using an analytically optimised 

algorithm in 2005, 2008, and 2014. This research takes things into account since 

energy consumption, particularly for larger robots, relies on how rotations and 

curved trajectories are executed. Similar robots were employed by Mei et al. (2004, 

2005, 2006) to study energy efficiency in terms of exploration, search, and 

deployment. As a subproblem of exploration and other top-level robot operations, 

point-to-point navigation is the subject of this study as opposed to those other 

activities. 
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Similar to the energy model mentioned in this work, Liu and Sun (2011, 2012, 2014) 

employed it, but they saw energy efficiency as a global planning problem and extended 

the A* algorithm to it. This method, in contrast, addresses it as a local planner issue 

since the robot must be capable of quickly adapting to changes in the environment. 

Global considerations would become outdated as a result of these developments, which 

would cause the robot to abandon the global plan. 

The next section of this paper explains which general considerations have been made. It 

describes basic factors which influence the energy consumption of a mobile robot. In 

Section 3 the main contribution of this paper, the developed Energy Efficient Dynamic 

Window Approach (EDWA) algorithm which is an extension of the Dynamic. 

Window Approach (DWA) planner is introduced. It also covers  the linear model that 

is used and discribes the  use of linear regression to fit the model. Empirical results 

with the Mecanum wheel based AuckBot are presented in Section 4. 

 

2 .ENERGY CONSIDERATIONS 

This is a general consideration of the factors which in- fluence the energy consumption 

of a mobile robot. The aspects are defined platform independent. They are gener- ally 

applicable to any holonomic mobile robotic platform. All the mentioned aspects are 

explained with a quantified route in mind. Goal Model 

 

 

 

 

 

 

 

 

 

Often navigation is defined to be time optimal (see Shiller (1996)). In contrast, this 

paper solely speaks about energy optimization because time optimality is for all 

practical robots considered to be a necessary condition of energy efficiency. This is 

mostly due to idle currents which are consumed by a robot even without motion. 

That idle current consumption means a robot spending less time to reach its goal 

potentially needs less energy than one taking more time. 

Route Length 

A basic requirement for a planned route regards the length. The path from the current 

position (s) to the goal (e) over all length segments dLi should be as short as possible. 

Any additional length would require more energy. 

Smoothness of Motion 

The mathematical notion of smoothness is defined as the existence of derivatives in a 

possibly high order. This should be a goal for a robots trajectory, since jerky motion can 

create vibrations which result in energy loss (see Rao (2007)). This is taken into account 

by the inclusion of the acceleration into the cost function. Which is described in 

Subsection 3.5. Higher order derivatives are currently not considered because data for 

those are expected to  have high noise and it is therefore unlikely to create any benefit. 
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ENERGY EFFICIENT DYNAMIC WINDOW APPROACH 

 

The creation of a energy efficient local planner is stud- 

 

min dLi 

i=s(1)ied by the creation of a model based cost function that 

evaluates potential trajectories in terms of their expected energy consumption. The 

model on which this cost func- 

In the presented architecture (see Figure 1) this require- ment is met by the global 

planner which uses the previ- ously mentioned Dijkstra (1959) algorithm. Also the 

local planner which is proposed here, prefers short trajectories as described later. 

 

Pose Efficiency 

A robot has a set of possible movement poses C, which have different energy 

consumptions E. It is a goal to move for as many route sections dLi as possible in an 

efficient pose p. 

 

e 

min E(dL , p) (2) 

p∈C i=s 

For most configurations this is mainly influenced by the robots heading angle. For 

example, in the case of a Mecanum wheeled robot the amount of wheel slippage varies 

for different directions of movement. In this ap- proach this aspect is taken into account 

by  the splitting     of the motion into the two planar Cartesian components. This way the 

model can include information about the advantage of one direction of movement over 

another. 

tion is based is fitted dynamically using online data. The architecture necessary for this 

setup is described in the following Subsection. 

Architecture 

To be able to include the necessary modules a specific architecture is designed. 

Figure 1 shows the general struc- ture of the used architecture. The left boxes 

symbolize the basic planner infrastructure, consisting of a Global Planner which 

receives the current goal as input and produces a route from the robots current 

position to this goal. This route is input for the EDWA Planner as local planner 

which is intended to make the robot follow this route. This is where the cost function 

described in Subsection 3.5 is implemented. The velocity commands are sent to the 

robot using the Robot Driver module which is where the electri- cal current consumed 

by the robots motors is measured as well. This data is used by the Model Fitting 

component together with the velocity commanded to the robot to fit a model to this 

data, which is described in Subsection 3.6. This model is fed back to the Local 

Planner to be used for planning. 
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The setup consisting of global planner, local planner and robot driver is popular in 

robot navigation. This approach 01adds a component for the model fitting (see blue 

highlights in Figure 1) and extends the local planner component. 

 

 Dynamic Window Approach 

The base algorithm used as local planner for this paper is the Dynamic Window 

Approach introduced by Fox et al. (1997). It can be summarized to three steps: 

(1) Creation and simulation of a number of possible trajectories based on the robots 

current dynamic state. Excluded are such trajectories that lead to obstacles or exceed 

configuration speed constrains. All possible trajectories lay in this dynamic window. 

(2) Evaluation of the created trajectories based on certain cost functions concerning 

the distance from the path and the goal as well as the heading towards the goal. 

(3) Execution of the best trajectory i.e. the one with the lowest overall cost. Which 

makes the robot move  in this trajectory. 

The DWA was chosen as it is readily expandable by the inclusion of additional cost 

functions. The discrete creation of any potential trajectories makes it possible to 

evaluate those as hypotheses. Because the basic concepts of obstacle avoidance and 

path following are already included into the algorithm, those aspects do not need to be 

considered any further. 

 Energy Analysis 

To integrate an estimate of energy consumption into the DWA planner, a model of the 

energy consumption of the robot was developed. The model is based on three types of 

energy in the system which is partially motivated by Liu and Sun (2014): 

(1) Electric Energy Eel depending on Voltage U , cur- rent I at the time t: 

Eel = U · I · t (3) 

For the idle current which is present independent of 

robot motion. 

Motor Magnetization 

• Motor Saturation 

• Motor Resistance 

• Battery Resistance 

• Electronics Heat Radiation 

• Ground Friction 

• Bearing Friction 

• Wheel Slippage 

• System Vibrations 

 Model Definition 

The model is defined based on the robotic energy analysis. It is dedicated to make a 

prediction of the estimated energy consumption of any given trajectory. 

The speed of the robot in x,y-direction, yaw rotation [vx   vy   vθ]  and  the  accelerations  

[v̇x   v̇y   v̇θ]  build  the model vector X. With the model parameter vector β the predicted 

current consumption It is defined as: 

It = [1 |vx| |vy| |vθ| |v̇x| |v̇y| |v̇θ|] · β
T
  = X · β

T
 (7) 

This predicts the current for one discrete section of trajec- tory. 

The energy for the whole trajectory Etraj is given consid- ering the constant supply 
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voltage U and time slot length t. With  traj being the summation over the whole 

trajectory. 

Etraj = (It · t) · U (8) 

traj 

 

 Energy Efficient Cost Function 

Based on the defined model of the energy consumption of a trajectory the following 

calculation for the trajectory cost is performed. This is calculated for each trajectory 

generated by the DWA as described in Subsection 3.2. The cost component for the 

trajectory energy CEt is based on the trajectory length lt and the number of samples 

in this trajectory n. 

 

(2) Frictional Energy Efric depending on speed v, 

frictional constant C and the distance s: CEt =  
 1 Σ

(X · β
T
 ) · (n − 1) (9) 

 

Efric = Ff · s = v · C · s (4) The friction in the whole system is 

considered as being depending on speed of movement. 

(3) Acceleration Energy Eacc depending on accelera-tion a and the accelerated mass 

m: traj 

The consideration of only trajectory costs would lead to mostly slow movements of the 

robot, if this is considered energy efficient. To additionally make a prediction for the 

remaining route, the following route energy cost  

CEr is EaccFa 

· s = a · m · s (5). 

 

The distance s is assumed to be constant on short distances. The increase of kinetic 

energy is considered using the acceleration of the system. 

 It assumes no further acceleration during the path. It therefore assumes the speeds at 

the end of this trajectory as constant and the mean over x and y-direction v̄ . 

for a trajectory Etraj: 

Etraj = Eel + Efric + Eacc (6)  

CEr =r1 T 

− l 
([1 |vx| |vy| |vθ| 0 0 0] · β

) 
lr v̄ (10) 

The trajectory energy in this setup is measured electric energy similar to (1). 

This model includes also further energy forms and lossesThe previously defined cost 

functions in (9) and (10) are combined and weighted in respect of the trajectory 

length lt and route length lr. 

l 
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that are either constant, speed proportional or acceleration proportional. Therefore, it 

does not consider components of the following losses that are not proportional to 

motion:
C = 

ltCEt + CEr · (lr − lt) E lr
 

 

 Model Fitting 

 

The performance of the previously mentioned cost function depends on the model 

parameter vector β. This setup includes a feedback of this model parameter from a model 

fitting component. This is visualized in Figure 1. Input to the model fitting component is 

the velocity command and the measured overall motor current Im. 

To fit the model, a basic linear regression approach is used. In this the model error J is 

defined as: 

J = (X · β
T
 − Im)

2
 (12) 

o 

This is calculated as sum over a number of o previous measurements to be robust 

and independent of sudden changes. 

For every new measurement the gradient grad is calculated based on the partial 

derivative of the model. 

grad = (X · β
T
 − Im) · X (13) And the model parameter is 

updated accordingly. 

β = β − α · grad (14) 

A basic linear regression approach would require the learning rate α to be scalar. 

Instead this setup uses a variable learning rate approach which is described below. 

 

 Variable Learning Rate 

If the previously mentioned model update (14) uses a scalar learning rate, it would 

produce unwanted behavior due to irregular presence of input data. As the 

acceleration data input is produced numerically based on past measure- ments, it is 

only available if the speed command changes. In contrast, the idle current is evaluated 

(see (7)) for every iteration. This would lead to a relatively fast convergence of the 

parameter vector component that is concerning the idle current and to a 

comparatively slow convergence of those components concerning other inputs. 

To compensate these asymmetries the concept of variable learning rates is introduced 

(similar to Bowling and Veloso (2002)). A custom learning rate is calculated for 

every input feature. The α vector entry number i is defined    as αi. It is based on the 

length of the buffer of previous measurements used in (12) and the number of 

nonzero occurrences of the respective feature i during this buffer oXi. The regular 

learning rate, which would be used in a 

regular linear regression is included as α0. 

drive motor has been equipped with one sensor that tracks its current consumption. 

The results of the sensors are summed to build the input for the model fitting 

component. 

The tests were performed using the ROS Navigation Stack (see Marder-Eppstein et al. 

Waypoint B 

Waypoint A 

·  
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(2010)) which was set up for this robot. The source of both the test setup and the 

presented algorithm is available online 
1
 . 

Test runs were performed in the environment shown in Figure 2. The test space is a 

research laboratory which represents a partially dynamic situation. During the mea- 

surements small sections of the surroundings were changed due to moved furniture or 

moving people. This is consid- ered a realistic setting, since a mobile robot can not 

expect a fully static environment. 

The robot was commanded to navigate back and forth between the waypoints A and 

B. The routes between the waypoints had an average length of 6.95 meters, depending 

on the path chosen by the robot. It required the robot to perform more than π radians 

of rotation for most of the trips. This is considered a representative navigation task, 

since it had a length that is long enough to contain both acceleration and constant 

speed sections. The goals were also chosen for the route to contain both rotational 

and transitory sections which represents a good combination of possible practical 

usage scenarios. 

 

4.2 Energy Consumption 

αi = α0Xi(15) 

The  main  result  is  a  comparison  between  the  planner 

with the cost function described in this paper and the 

If for example the feature would hold a nonzero value half of the time, this factor 

would be 2 α0. Experiments show that α0 = 0.01 leads to useful results. For more 

experimental data see Subsection 4.3. 

 

RESULTS 

 

4.1 Setup 

The previously described planner  setup  was tested  using a Mecanum Wheel based  

platform  as  described  by  Xie et al. (2015). The existing robot was expanded using 

current sensors to measure current of each motor. Eachtraditional DWA algorithm. 10 

trips were evaluated per configuration. Mutual constrain of the compared configu- 

rations is the duration to reach the goal. The configura- tions are tuned to meet this 

constraint, so as to make both current consumptions comparable. The results in Figure 3 

show a 9.79% mean energy reduction by using the EDWA algorithm. 

The compared setups are tuned to take the same time    to reach the goal. This is 

done by altering the constrains on maximum velocity separately for both setups.  
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Fig. 3. Box plots indicating charge, length, rotation and duration of the test runs. 

Every value allows comparison between DWA and EDWA test setups. 

 

 
 

Fig. 4. Plot illustrating the model fitting on recorder d 

ata: Speed in x-direction; error of the model while learning; Variable Learning Rates for 

the model 

energy comparison has the unit of electrical charge, since the consumed current was 

multiplied by the time to  make it comparable. The results show that all measured 

metrics have a big variance which is due to the dynamic environment and the robot 

choosing small path alterations for every trip. 
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4.3 Variable Learning Rate 

Using recorded data the convergence of the model using the variable learning rate 

was tested. By watching the model error it is possible to determine whether the 

model converges to a solution. This was mostly done to monitor the values of the 

variable learning rate. 

Figure 4 shows in the top section a measurement of the speed in x-direction. The 

middle section shows the model error decreasing as the model diverges. The bottom 

section shows the variable learning rates for the speed data entry and the idle current. 

It is visible that the speeds learning rate changes with the availability of 

corresponding data. The higher peak at the beginning of the data is due to  the zero 

velocity at the beginning at the measurement. As the time elapses more non-zero 

measurements are included into the calculation which lets the variable learning rate 

decrease. 

1. CONCLUSIONS 

The practical optimization criteria for mobile robot navigation is energy 

consumption. It is demonstrated how several aspects are important for the energy 

efficiency of mobile robot navigation. Therefore, no straightforward, one-

dimensional optimization can be used to tackle the issue. 

It has been shown that the EDWA algorithm saves 9.79% energy in comparison to a 

DWA setup, while reaching thegoal in the same time and on the same global route. 

High variance in results indicates potential for improvements of energy savings. 

The Variable Learning Rate approach proofs to handle such data well. It is capable 

of handling unsynchronized occurring data. The currently used model fitting setup is 

configured to also adopt to changes of the platform physics. If for example a robot in 

logistics would be equipped with this algorithm, it would handle additionally carried 

weight energy efficiently. This adaptability can be proven experimentally in future. 
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