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ABSTRACT 

We look at the viability of loosely linked distributed datacenter architectures that are connected by 

high-bandwidth low-latency data lines, collocated with renewable energy sources, and powered by them. The 

design of these architectures promotes I variable machine availability: the amount of renewable energy that is 

available at any given site determines the number of machines that are accessible at any given time, and (ii) 

workload deferment and migration: if there is not enough capacity at a site, workloads are either stopped or 

moved to temporary energy-rich locations. The viability of these systems depends on I the need for 

extra hardware, (ii) the associated service disruptions, and (iii) the data and energy overhead of 

workload movement. This is true even if these architectures are appealing from an environmental 

point of view. We make an effort to broadly quantify these overheads in our study. We 

establish a model for the fundamental architecture that takes into account the power 

requirements of the network and datacenter's equipment. We then compare this energy use to 

the renewable energy sources that are accessible in various parts of the world. We offer two 

simulation-driven case studies based on data from the production clusters of Google and 

Facebook using this methodology. We offer insights on the trade-offs related to this off-grid 

architecture generally. For instance, we demonstrate that an optimized design with 10 dispersed 

datacenters increases work completion time by 2% at the expense of a 50% increase in the number 

of computers needed. 
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1. INTRODUCTION 

Datacentres accounted for 1.5% of global electricity consumption in 2011; 56% higher than 

the previous five years [1]. Energy efficiency gains are not matching the increas- ing demand 

for computing [2]; while technologies such as smart standby and dynamic frequency [3, 4] 

scaling promise at best to provide energy-proportional computing. Con- sequently, datacentre 

operators incur high energy bills and face environmental pressure from society. 
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Researchers have thus started exploring the use of renewable energy in datacentres as an 

alternative clean and potentially cheap energy source [5, 6, 7, 8, 9, 10, 11]. However in- termittent 

renewable energy adds hardship to the “always on” guarantees by datacentres. This challenge 

motivated a plethora of research directions to find a viable solution. 

The first track of research focuses on smart scheduling of the computing load. As many 

workloads are delay tolerant, jobs can effectively execute when energy is available [10, 7,11]. 

However the fact that renewable energy is not predictable can cause large periods of outages 

and in turn affects service level agreement. 

Another complementary track of research explores the use of energy storage devices 

(e.g. UPS) to even out variability of renewable energy [12, 13]. However UPS is not suitable 

for medium to long power outages. Moreover these devices are expensive, have limited 

charge/discharge cycles and are not environmental friendly [14, 9]. 

A third direction is to leverage geographical diversity of internet-scale systems to 

provide environmental gains [5, 6, 15]. Specifically, these distributed systems dynamically route 

requests based on local renewable energy availability. However this technique works best for 

stateless, shortlived requests such as serving static content. 

We think that in order to maximise the use of renewable energy we need to consider 

these observations. (i ) Remote locations usually have higher renewable energy poten- tial [9]. 

(ii ) Geographically disjoint locations complement each others in terms of overall energy 

production [16]. (iii ) Incorporating renewable energy within the electricity grid is costly and 

inefficient [17, 18, 19, 20]. 

This supports a more unconventional solution; we rely on off-grid architectures for 

integrating renewable energy into datacentre computing [21, 22]. Datacentres are located next to 

renewable energy sites and interconnected via dedicated links. Jobs are initially submitted to 

sites with adequate compute and power capacity, and are either migrated to another location or 

halted if the current capacity at the local site falls below the minimum level necessary to support 

them. 

This paper explores, using a holistic model and case studies, the intrinsic trade-offs associated 

with this off-grid system design and quantifies the different overheads in pro- visioning the 

architecture and execution of computations. Our results, based on two real-world case studies, 

have found that an optimised config- uration consisting of ten distributed datacentres can fully 

rely on renewable intermittent energy to support computations with approximately 2% 

additional delay in their com- pletion time relative to conventional architectures. However, this 

flexibility comes at the expense of up to 50% increase in the number of servers. We start by 



 

 

JuniKhyat                                                                                                      ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                                       Vol-11 Issue-01 March 2021 

Page | 1324                                                                                 Copyright @ 2021 Authors 

describing this new architecture in detail (Section 2). We then formulate a board, encompassing 

model to inform a simulator for this type of architecture (Section 3). Based on this model, we 

present two case studies (Section 5 and 6) that illustrate the inherent trade-offs associated with 

provisioning datacentres and computing in this off-grid system. Finally we discuss related work 

(Section 7) and conclude (Section 8). 

Our goal is to move the discussion of this off-grid architecture forward. Having a large problem in 

hand means that our model is necessarily an approximation. Nevertheless we believe that this 

work takes the first steps to identify the many factors inherent in this architecture and 

quantify their costs and benefits. 

 

2. ARCHITECTURE OVERVIEW 

We present an example off-grid architecture (Figure 1) that enables the integration of 

renewable energy into datacentre computing without requiring the expensive investment necessary 

to deploy renewable energy at scale [21]. Data centres are located next to renewable energy 

sites and linked together with a dedicated communication network. The 

 

 

 

 

Figure 1: Off-Grid Computing Architecture [21] 

 

 

system automatically migrates workloads (application and data) to locations that have enough 
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power so that they continue execution despite the variability of renewable energy. Several 

technologies support the realisation of this design. (i ) Virtualisation (and more specifically live 

migration) is a practical technology, which enables the seamless mobility of virtual machines 

(VMs) to other physical hosts with minimal downtime. (ii ) High- bandwidth optical systems 

provide quick transfer of state data during migrations. Addi- tionally, (iii ) scalable modular 

datacentre design permits the easy deployment of computing facilities at remote locations. 

Computing using this architecture has technical hurdles, which have been addressed in the 

literature: (i ) smart routing of jobs based on fluctuating energy levels [5] (ii ) planning and 

provisioning support through predicting migration times, i.e. the duration of the migration 

process and the length of service interruptions [23, 24] and (iii ) efficient disk- state 

synchronisation to remote destinations [25, 26]. 

Obviously, not all workloads are appropriate for inclusion in this model. In practice, batched 

compute-intensive jobs that accommodate slack scheduling are good candidates. However, latency 

sensitive jobs might fare poorly as they will be affected by service interruptions and 

propagation delays. 

The Big Data Challenge: the biggest challenge that is typically associated with workload 

mobility is data synchronisation, especially for Big Data applications (e.g. MapReduce). 

However it has been demonstrated in a previous research that 80% of MapReduce jobs require 

only a fraction of the input data in the order of megabytes [27, 28]).  Moreover 80% of jobs 

write small files (< 64 MB) to the distributed file sys-  tem [29, 30]. Effectively, we assume 

that each location will have local access to this small highly accessible data. We also restrict 

the set of “movable” jobs to the ones that either have their data ready at the destination or 

require the transfer of small amounts. There exist a few techniques in the literature that further 

reduce the amount of data to be transferred. It has been observed that the long term average write 

rate of applications is low compared to gigabit links [23, 31] which makes the synchronisation 

process tractable. Moreover, smart write coalescing [23, 31] has shown to reduce the amount of 

data sent by absorbing transient overwrites. Coupled with selective data copying heuristics (e.g. 

based on access frequency) [26] and redundancy elimination techniques (e.g. deduplication) [32], 

the total disk-state transferred can be minimised. 
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Figure 2: Estimated Power (Wind + Solar) for Two Sites Having Each 10,000 m
2
 of Solar Cells 

and one 1.5 MW Wind Turbine. 

 

Figure 3: Datacentre Locations. Number indicates the maximum level of distribution in which a 

particular site participates. 

 

3.MODEL FORMULATION 

Data-centre Model 

Datacentres consume energy to host IT equipment such as servers, storage nodes and net- work 

devices. Datacentres also have cooling and power distribution systems that support the operation 

of this equipment. We model the energy usage of datacentres by considering the power of the 

computing infrastructure (servers) and the supporting systems (cooling and power distribution). 

The off-grid infrastructure relies on virtualisation; i.e. one physical server can host several 
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Σ 

VMs. We assume that each physical machine (k) in the datacentre utilises Pmstatic when it is on 

and a further Pmdyn for each active VM (1). 

 

Pm(k) = Pmstatic(k) + NumV M (k) 

 

 

i=1 

Pmdyn(i) (1) 

Based on previous studies we set Pmstatic and Pmdyn to 150 W and 25 W respectively [33, 34] and 

assumed that up to four medium-sized VMs can run at one physical machine. 

We estimate the additional overheads of each datacentre (n) due to power distribution and cooling 

using the power usage efficiency (PUE) metric (2). 

 

Pdc(n) = PUE(n) ×NumMachines(n) 

k=1 

Pm(k) (2) 

The PUE was set to 1.1 (i.e. 10% of the total energy is consumed by  the cooling  and power 

distribution systems), which is currently achievable in the industry [35, 36]. With “free” 

cooling and higher datacentre operating temperature becoming mainstream, many locations can 

potentially reach this low PUE with manageable effect on system reliability [37]. 

In our model, we do not consider overheads that might be associated with dynamic server 

provisioning techniques (e.g. turning on/off servers) or with chillers for ramping up- 

/down cooling. It is expected that these overheads will continue to fall [4] to insignificant values. 

Moreover, we do not consider networking infrastructure inside one datacentre in this work as 

datacentre networks (whether it is conventional or fat tree) accounts for a small (5%–10%) 

percentage of the overall facility power [38]. 

We acknowledge the fact that PUE changes according to the outside environmental conditions. 

However we ignore this complexity for a first order analysis. Moreover our model is easily 

extensible to accommodate a dynamic PUE. 

NETWORK MODEL 
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t 
AmpDist(ter) 

a tm t 

In this system, datacentres are interconnected with dedicated links that will carry memory and 

disk-state during synchronisations. Consequently, the transition of a workload to another 

physical location consumes energy in the processing of packets/frames by different components of 

the network. We use an existing network power model, which focuses on the core network and 

the underlying optical transport systems [39]. 

CORE NETWORK 

The core network consists of a few large routers that route traffic to neighboring nodes. We 

assume that routers fully process IP packets. Consequently, the power incurred by a packet in 

the core network (Pc) is directly proportional to the number of hops (numHops) that is required for 

the packet to reach its destination along with the power of each router (Pr). Additionally, core 

routers are usually provisioned for redundancy and future growth factor (factorr) (3). We assume 

that the network is energy-proportional (a promise of future photonic systems) and hence the 

power values represent only the fraction required to support migration based on the amount of 

data transferred. 

 

Pc = (numHops + 1) × Pr × factorr (3) 

We used the power profile of a single-shelf 16-slot Cisco CRS-3 core router that con- sumed a 

maximum of 13.2 KW for the processor, line cards and switching fabrics, and had a switching 

capacity of 4.48 Tbps [40]. Additionally, a redandancy/growth factor of 8 was considered 

according to published numbers [39]. This translates to an energy profile of approximately 2.7 

nJ/bit. 

OPTICAL TRANSPORT SYSTEMS 

Long-haul networks between core routers employ wavelength division multiplexing (WDM) 

transport systems that require high-performance modulations of optical signals. There are 

essentially two similar kinds of WDM links: terrestrial and undersea links. Both systems 

require line terminals (Ptm) at each end in addition to signal amplification (Pa) every AmpDist 

distance. A redundancy/future growth factor is also considered (factort). The total power used 

by the transport systems (Pt) is: 

 

P  = 

.
 Dist(ter) 

× P (ter) + 2 × P (ter)

Σ 

× factor (ter) 
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AmpDist(sea) 
a tm t + 

.
 Dist(sea) 

× P (sea) + 2 × P (sea)

Σ 

× factor (sea) (4) 

 

In our simulations, terrestrial systems used Fujitsu Flashwave 7700 line terminals that consumed 

811 W for 44 channels (40 Gbps per channel). An amplifier was required every 100 km which 

drew 622 W. Similarly, undersea systems used 4.5 KW Fujitsu Flashwave S650 line terminals 

for 64 channels (10 Gbps per channel) and 50 W repeaters every 50 km [39]. We assumed that 

70% of the link distance was undersea and the rest on land. This adds up to approximately 29.8 

nJ/bit with a redundancy/future growth factor of 4. 

PROPAGATION DELAY 

While overheads in communication networks depend on processing, queueing and propa- gation 

delays, only propagation delays are considered in our model as they represent the minimum 

possible overhead that can be achieved. We therefore used the speed of light, its refraction 

index traveling in glass and the direct distance between any two datacentres to estimate the 

minimum time required for a packet to be transferred between these two locations. While this 

assumption may appear optimistic and currently unrealistic, we envision that future networks 

would have the capacity to assign a dedicated light path in a WDM link for the purpose of 

workload migration which would have virtually zero interference with the normal inter-

datacentre traffic. 

RENEWABLE ENERGY REPRESENTATION 

We focus on wind and solar energy as they are prevalent but intermittent in nature. We 

represented them based on weather station readings for the year 2009. 

We extrapolate wind speed from the weather station readings [41] at ground level to 80 m, 

which is the typical height of the wind turbine. The wind energy is then modelled as a function 

of the turbine power curve [16]. 

Solar irradiation on the other hand is a factor of latitude, time, atmospheric condi- tions and 

aerosols. We estimate the amount of solar energy using a simple insolation model [42] that 

incorporates these factors to approximate clear-sky solar irradiation at a given location. We 

also account for cloud cover available from the weather station readings [41]. Weather station 

readings are reported on three-hour interval; however this resolution is not enough for the purpose 

of our simulations. Therefore, linear interpolation was used between the actual values as an 

approximation for a higher granularity. 
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In our simulations, we assumed that each datacentre had 10,000 m
2
 of solar cells with an average 

efficiency of 13% and one 1.5 MW wind turbine. The provisioning of wind and solar energy 

harvesting equipment was held constant. This choice was based on the facts that: (iv ) 

renewable energy is intermittent which renders the planning process difficult (and beyond the 

scope of this research), (v ) the amount of computations that can be executed is already capped by 

the computing capacity provisioned despite how many wind turbines or solar cells are available 

on site, and (vi ) most importantly this setup gives roughly equal weight to wind and solar 

contribution in our simulations. 

We believe that this set of energy harvesting equipment is good enough to illustrate the 

behaviour of the system. It is not too small to restrict the number of computations that can get 

executed and it is not too large to mask the effect of renewable energy intermittency. 

Figure 2 illustrates the power output for two different sites during one week in July 2009. The 

periodic effect of solar power on the total output is clear from this figure. Moreover due to the 

time zone difference between the two locations, the peak power output is shifted. In other 

words the two sites complement each other. This is exactly the opportunity that is exploited by 

relocating workloads to where energy is currently available which enables sustaining the 

computation demand despite the intermittency of renewables. 

ARCHITECTURE OVERHEADS MODEL 

There are different overheads inherent in this architecture related mainly to workload 

migration and intermittency of renewable energy. Generally these overheads fall either into (i ) 

service interruptions or (ii ) additional data transfer and, by extension, energy consumed in the 

network. Service interruptions are caused by either migration originated downtime or lack of 

resources. Moreover the migration process requires synchronisation of memory and disk-state to 

the destination which affects the network in terms of data load and energy. 

SERVICE INTERRUPTIONS 

The impact on availability inherent in the system comes from two factors: (i ) during the final 

stop-and-copy migration phase and (ii ) when the application is paused due to lack of resources. 

Migration Originated Downtime: the duration of the stop-and-copy stage of the migration 

process is workload, network and machine specific [23, 43]. Generally we es- timate this 

migration originated downtime based on the amount of state that needs to be transferred on a 

given link speed plus the propagation latency. We assumed that all associated VMs with a 

given job are relocated to the destination in parallel. In other words, the total migration 

originated downtime per job is equal to the downtime for a single VM under this specific job 
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Σ 

multiplied by the number of migrations. 

Availability of Resources: sometimes there are not enough resources, in terms of compute and 

power capacity in the system, to accommodate all jobs. Therefore a number of jobs (and their 

VMs) at each of these events (e) have to be paused until more resources are available. 

 Execution delay for a given job is therefore modelled as: 

T otalDowntime(job) =NumEvents(job) 

 

e=1 

PausingTime(e) 

+ NumMigration(job) × V MDowntimeMigration(job) (5) 

 

DATA TRANSFER 

There are two components contributing to the amount of data that needs to be transferred during 

migrations: (i ) memory-state synchronisation and (ii ) disk-state synchronisation. The pre-copy 

migration model iteratively transfers memory-state modifications to the target host with the 

expectation to have a short final stop-and-copy phase [44]. On the other hand, storage is 

“smartly” synchronised so that when migration is triggered disk- state difference is small enough 

to enable a minimal downtime [25]. Note that applications are always migrated with their 

associated disk data. 

While it seems that this process is less flexible due to the constraint that a VM can only be 

migrated within the set of datacentres in which its disk image is synchronised, in practice it is 

expected that technological (e.g. multicast streaming) and organisational (e.g. pre-computed 

VM scheduling policies) techniques will mitigate this requirement. Additionally destinations 

can be pre-selected with the help of weather forecasts.  

The amount of memory-state is estimated to be equal to the memory size allocated per VM 

multiplied by a factor that accounts for the working set size. For one migration event per job, 

data is aggregated for all its associated VMs running at that point. A job can have several 

migrations, which of course increase the total data sent. Even if a job does not require 

migration, it still consumes bandwidth by the proactive disk-synchronisation mechanism. For 

storage synchronisation, the disk data sent by a specific job is equal to its running time 

multiplied by the associated number of VMs and their average disk write rate. 
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The total data transferred by a given job is: 

 

NumMigr(job) NumV M (i) 

T otalData(job) = 

Runtime(job) 

Σ

i=1 

Σ

j=1MemSize(j) × Factor 

+t=1NumV M (t) × AvgV MWriteRate(t) (6) 

 

 

EVALUATION METHODOLOGY 

The off-grid infrastructure is evaluated by comparing the amount of completed com- putations 

and their runtime with respect to the traditional centralised case, which is a configuration that 

constitutes one datacentre powered by the electricity grid and has on- site generators as a 

backup. Consequently, it is guaranteed that this datacentre has a stable supply of power that 

can be used to run the computation demand. This conven- tional configuration (i.e. the 

provisioned computing capacity along with the number of completed computations and their 

runtime) is used as the reference point in the analysis. 

 

Metrics 

Site Selection 

The locations at which datacentres are built play an important role in minimising the total cost of 

ownership. Conventional site selection strives to optimise different parameters such as energy cost, 

connectivity and proximity to clients. However, maximising renewable energy output is our 

primary focus as we assume that other criteria (e.g. connectivity) would be easier to achieve. 

The infrastructure is distributed by design over different geographical regions. We chose fifty 

locations according to their wind and solar power potential (Figure 3). These sites are picked to 

complement each other in terms of aggregate power generated: (i ) their time zones are far apart to 

maximise solar power over a 24 hour period, (ii ) their locations are chosen in different 

hemispheres so that winter and summer interchange and (iii ) their locations are well distributed 

to even out intermittency of wind and solar power [16]. With many datacentres now being 

Σ 
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operated at higher temperatures, hot climate is not eventually a concern at these chosen 

locations [45]. 

 

 

 

 

Table 1: Level(s) of Distribution Executing the Target Computations with No Bound on 

Average Increase in Execution Time Relative to the Centralised Case (x–y Means Between 

x and y) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Slack Reserves 

0% 10% 20% 50% 100% 200% 

0% N/A 5 5 4–5 4–10 4–10 

10% 5 4–5 4–5 3–5 2–10 2–10 

20% 4–5 3–5 2–5 2–5 2–10 2–10 

50% 2–5 2–5 2–5 2–5 2–10 2–10 

90% 2–5 2–5 2–5 2–5 2–10 2–10 

January 2009 
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Slack Reserves 

0% 10% 20% 50% 100% 200% 

0% 3–5 3–5 3–5 3–5 3–10 3–10 

10% 3–5 3–5 3–5 2–5 2–10 2–10 

20% 2–5 2–5 2–5 2–5 2–10 2–10 

50% 2–5 2–5 2–5 2–5 2–10 2–10 

90% 2–5 2–5 2–5 2–5 2–10 2–10 

July 2009 

Slack Reserves 

0% 10% 20% 50% 100% 200% 

0% N/A N/A N/A N/A 10 5–10 

10% N/A N/A N/A 4–5 4–10 3–10 

20% 5 4–5 4–5 3–5 2–10 2–10 

50% 2–5 2–5 2–5 2–5 2–10 2–10 

90% 2–5 2–5 2–5 2–5 2–10 2–10 

January 2009 
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Table 2: Level(s) of Distribution Executing the Target Computations with < 10% Bound on 

Average Increase in Execution Time Relative to the Centralised Case (x–y Means Between 

x and y) 

JOB PLACEMENT ALGORITHM AND MODEL ASSEMBLY 

We assume that migrations happen at the job level to avoid inter-process communications crossing 

the datacentre boundary which will otherwise degrade performance significantly due to 

geographical latency. 

A greedy placement and scheduling algorithm is used in our simulations. When a new job 

arrives to the system, the algorithm searches for a datacentre that has enough compute and 

power capacity to accommodate it (Eq. 2). If no datacentre is found meeting these requirements, 

execution of this job is queued until resources are available. 

In the situation where power drops at one site, some jobs have to be evacuated to different 

available datacentres. The algorithm searches for locations that have enough resources to host 

any of these jobs. Otherwise, they are paused and resumed as soon as possible. Priority is 

given to running and paused jobs over new ones for a given class. 

We compute service interruptions that are expected to happen due to transient lack of resources 

and migration originated downtime (Eq. 5). Moreover during the migration process, state 

information is synchronised to the destination (Eq. 6). This data in the form of packets sent on 

the link consumes energy at the core (Eq. 3) and transport (Eq. 4) networks. 

 

CASE STUDY A: CLUSTER-TYPE JOBS 

GOOGLE CLUSTER WORKLOAD TRACE 

The first case study involves a computation demand driven by a Google cluster trace [46]. This 

dataset is collected over a period of 1 month (May 2011). It includes details about jobs and 

their associated compute tasks from a 11,000-machine cluster. It is believed that they 

represent a variety of back-end tasks executed on Google compute clusters (e.g. compute-

intensive web logs analysis, user-facing web search processing and other MapReduce workers) 

which have diverse service level requirements for throughput, latency and jitter [47]. 

Slack Reserves 

0% 10% 20% 50% 100% 200% 

0% N/A N/A N/A N/A 5–10 5–10 

10% N/A 5 5 4–5 3–10 3–10 

20% 5 4–5 3–5 3–5 2–10 2–10 

50% 2–5 2–5 2–5 2–5 2–10 2–10 

90% 2–5 2–5 2–5 2–5 2–10 2–10 

July 2009 
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The dataset contains timestamped information about jobs representing the different states of 

execution (i.e. submit, schedule, evict, fail, finish, kill and lost). We only ex- tracted details 

about tasks that have completed successfully. Effectively we captured scheduling events for 

these tasks and allocated them according to the process described in Section 4.3. We followed 

job priorities available in the trace. Moreover, we assumed that each machine can host up to 

four tasks (encapsulated each in a VM). We also scaled up the number of jobs by two to 

correspond to the scale of our simulations. 

 

INFRASTRUCTURE PROVISIONING AND PLANNING 

The quantity of calculations conducted (and their runtime) for various setups were examined 

and compared to the conventional centralised scenario using the datasets and models 

presented in Section 3. The distribution level (number of datacenters), computing capacity 

allocated for each datacenter, and proportion of non-intermittent demand at each location 

were the main subjects of our investigation. Results between January and July 2009 are 

presented.  
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Slack Reserves 

0% 10% 20% 50% 100% 200% 

0% N/A N/A N/A N/A 10 10 

10% N/A N/A N/A N/A 5–10 4–10 

20% N/A N/A N/A 5 4–10 4–10 

50% N/A 4 4–5 2–5 2–10 2–10 

90% 2–5 2–5 2–5 2–5 2–10 2–10 

January 2009 

Slack Reserves 

0% 10% 20% 50% 100% 200% 

0% N/A N/A N/A N/A 10 10 

10% N/A N/A N/A N/A 4–10 4–10 

20% N/A N/A N/A 5 3–10 2–10 

50% 5 2–5 2–5 2–5 2–10 2–10 

90% 2–5 2–5 2–5 2–5 2–10 2–10 

July 2009 
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Table 3: Level(s) of Distribution Executing the Target Computations with < 1% Bound on 

Average Increase in Execution Time Relative to the Centralised Case (x–y Means Between 

x and y) 

LEVEL OF DATACENTRE DISTRIBUTION 

We start by considering the level of distribution (i.e. the number of datacentres in the 

configuration). This allows intermittent power output from different geographical sites to 

complement each other. The level of distribution in the architecture was varied at 2, 3, 4, 5, 10, 

25 and 50 datacentres. We selected each subset according to the same rules (discussed in 

Section 4.2). Figure 3 shows the locations of these subsets (> 10 omitted from the figure for 

clarity). The amount of machines provisioned at each site was initially set to the total machines of 

the conventional configuration (i.e. 15,000 machines) divided by the level of distribution (i.e. the 

number of datacentres). As the number of datacentres was increased, power variability was better 

smoothed out. However, this usually resulted in more machines being provisioned at each site. 

SLACK RESERVES 

As servers are spread over different sites, the system requires additional computing ca- pacity. 

More machines per datacentre are needed to execute the local computations as well as the 

migrated ones from other locations. This is due to the fact that not all sites are available at the 

same time because of renewable energy intermittency. This additional computing capacity is 

defined as slack reserves. This value was varied at 0%, 10%, 20%, 50%, 100% and 200% of extra 

machines which provide sensible Capex overheads for operators. For low levels of distribution 

(e.g. 2 and 3), there is not enough location diversity to even out intermittency and sustain the 

target computation load. For high levels of distribution (e.g. 25 and 50), even large slack reserves 

of 200% was insufficient to cope with the load. Dividing up the same number of machines on much 

more locations (powered by intermittent sources) might lead to a less available configuration as 

the compute capacity at each node decreases considerably. 
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Figure 4: Cumulative Percentage of Application Total Downtime (Percentage of Lifetime, VM 

Link Speed= 10 Gbps, VM Working Set Size= 0.5 GB) 

Figure 5: Total Data Synchronised per Application per Month (in GB, VM disk write 

rate= 0.5 MB/s, VM memory size= 7.5 GB) 

 

POWER MIX 

For low level of distribution, there is not enough location diversity to smooth out renewable energy 

intermittency and, by extension, jobs have to be delayed. Rather than increasing the level of 

distribution (and suffering more slack reserves), one can rely on a power mix that has a non-

intermittent component guaranteeing a baseload. This mix would enable the timely execution of 

computations while minimising slack reserves. The non-intermittent power load at each site is 

parameterised as a percentage of the maximum power needed for the provisioned computing 

capacity. The chosen values in our simulations were 0%, 10%, 20%, 50% and 90% for the 

datacentre. Although it might be impractical to consider 0% stable load for datacentres, it 

provides an upper bound on the amount of machines required. Executing the target number of 

computations is not the only metric associated with performance in our evaluation. In fact we 

are also interested in the runtime of jobs; i.e. whether they incur considerable delays during 

their life cycle. 

NO BOUND ON ADDITIONAL EXECUTION TIME 

Table 1 shows the level of distribution required for possible configurations of different slack 

reserves and non-intermittent baseload that execute the target number of computations; but with 

no bound on the increase in execution time per job relative to the centralized case. In fact, we 

have observed more than 60% increase in runtime in some of these configurations. In these 

configurations, a moderate level of distribution (5) is often required to min- imise both the slack 

reserves and the non-intermittent baseload. On the other hand, we can still rely on 2 or 3 
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≤ 

datacentres but with considerable increase in slack reserves and baseload. We effectively need 

to provision the system for almost the maximum load at each location because we do not have 

enough geographical diversity to smooth out intermittency of power. 

 

10% BOUND ON ADDITIONAL EXECUTION TIME 

 

We then restrict the additional increase in average execution time per computation relative to the 

centralised case to a maximum of 10%. It represents situations where we deal with applications 

that require a certain bound on completion but at the same time have some slack in scheduling 

which can be exploited to follow availability of power. Table 2 illustrates configurations that 

fulfil this requirement (i.e. 10% bound). Ob- viously, the set of configurations shrinks 

compared to the unbounded case. We have to moderately increase the slack reserves and the 

baseload with a level of distribution of 5 or more to achieve this target. 

1% BOUND ON ADDITIONAL EXECUTION TIME 

We further constrain runtime: 1% additional increase in execution time compared to the 

centralized case. It presents scenarios that require strict deadlines with almost no slack in 

scheduling. Table 3 shows that a considerable increase in machine capacity or baseload is 

often required. For example, 10 distributed data centres with at least 100% slack reserves are 

needed for the unaffected execution of computations. 

The system can still be configured with a modest amount of slack reserves and a limited increase in 

the non-intermittent base load. For example, a configuration provisioned with 20% non-

intermittent load, 50% additional machines and a moderate distribution level (e.g. 5) has the 

capacity to execute the target number of computations. We note that there are slight 

differences between the amount of computations done in January and July. Power output is not 

exactly the same because of different weather conditions. However, the general trend is 

similar. 

OPTIMAL CONFIGURATIONS 

The previous section showed that resources can be optimised by having a moderate in- crease 

in machine capacity along with a small load of non-intermittent power. This section discusses 

other configurations that improve on the previous results. In these cases, each datacentre can have 

different computing capacity and baseload values. They all achieve the target number of 

computations with less that 1% additional increase in execution time per job relative to the 

centralised case. The placement algorithm was modified to accommodate that datacentres have 

different sizes. The algorithm assigns jobs that require less machines to datacentres that have less 
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computing capacity. In doing so, resources are freed for the bigger jobs (that can not be 

accommodated in the smaller datacentres anyways) to run in the larger datacentres.  

Configuration X: 100% Renewable Energy Having four big datacentres (4,000 servers 

each) with six smaller ones (1,000 servers each) enables the timely execution of computations 

using 100% wind and solar energy. As the level of distribution is 10, sites complement each 

other in terms of energy. This comes at the expense of 47% additional computing capacity. 

Configuration Y: No Slack Reserves A set of three more reliable datacentres within the 

infrastructure having each 4,000 servers and 500 KW of non-intermittent load, and another three 

datacentres with 1,000 servers each can achieve the target amount of com- putations. This setup 

does not have any increase in the computing capacity over the amount of the centralised case. 

Additionally, the stable power component is just 37% of the total. Configuration Y is ideal 

when the cost of servers is dominant and hence the number of machines should be minimised. 

Configuration Z: Hybrid Design 

Configuration Z reduces the amount of non-intermittent load to below 8% (150 KW for the three 

big datacentres) and has a 40% increase in com- puting capacity. This achieves a trade-off 

between the provisioned computing capacity and the non-intermittent load at each site. The 

purpose of this configuration is to optimize the values of all parameters in the system. 

Overheads associated with the architecture: This section substantiates the various 

overheads associated with the infrastructure due to relocating workloads to different 

datacentres. We use an extreme configuration, which fully relies on wind and solar energy: four 

big datacentres having each 4,000 servers and six smaller datacentres having each 1,000 servers. 

This comes though at the expense of 47% additional computing capacity. 

Service Interruptions: As we have discussed before, the impact on availability inherent in the 

system comes from either occasional lack of resources or migration downtime. We observed that 

pausing time caused by lack of resources elsewhere has a much bigger effect on total 

downtime than 

Description 
 Power Capacity 

Configuration X 
4 datacenters |4,000 servers each 

+ 6 datacenters |1,000 servers each 

 
0% 

 
47% 

Configuration Y 
3 datacenters (500KW) |4,000 servers each 

+ 3 datacenters |1,000 servers each 

 
36.9% 

 
0% 

Configuration Z 
3 datacenters (150KW) |4,000 servers each 
+ 1 datacenters |3,000 servers each 

+ 6 datacenters |1,000 servers each 

 

7.8% 

 

40% 
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Table 4: Optimal Configurations Guaranteeing the Execution of the Target Amount of Compactions 

migration originated interruptions. In fact, more than 98% of the sum of total downtimes in our 

simulations can be attributed to pausing time related to lack of resources. Figure 4 illustrates 

the cumulative percentage of application downtime (presented as a percentage of its lifetime). 

The lifetime of an application is the duration from the moment a specific job is submitted to the 

system until it is completed successfully. Hence it includes running, pausing and migration stop-

and-copy times. The figure shows that more than 99.95% of the applications experience a total 

downtime less than 1% of their lifetime. In other words, service interruptions in the system are 

minimal apart from a very small set of applications. 

The number of migration events required when power drops influence the total down- time 

endured by a specific application. We observed that more than 90% of the com- putations do 

not require migrations. These are either short-lived applications that get completed before 

power drop or small-sized applications that can run with a fraction of the resources. 

On the other hand, 10% of all applications incurred at least one migration event. In fact 99% 

of these are migrated under 10 times. However, there are some applications (typically long-

lived) that are relocated many times: around 150 migration events per month for the worst 

case. This is expected as the system fully relies on intermittent renewable energy. 

Data and Energy Overheads : 

During migration, memory and disk-state are being transferred to the destination. Packets sent over 

the network consume energy which is considered as an overhead. This should be minimal 

compared to the energy used in driving the actual computations. Note that in our simulations a 

job (application) runs many tasks each encapsulated in a VM. 

We explored the amount of state information that is synchronised per job assuming VM disk write 

rate equal to 0.5 MB/s (based on average values from a previous study [25]) and VM memory size 

equal to 7.5 GB similar to an Amazon EC2 large instance (factor = 1.5 in Eq. 6). Figure 5 

shows that 90% of the applications transfer just over 20 GB of data 
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Figure 6: Average Power Required for Synchronisations for Different Core Hops (VM Disk 

Write Rate= 0.5 MB/s, VM Memory Size= 7.5 GB) 

 

Figure 7: Datacentre Evacuation for a Specific Case (VM Link Speed= 10 Gbps, VM 

Working Set Size= 0.5 GB, VM Disk Write Rate= 0.5 MB/s, VM Memory Size= 7.5 GB) 

per month. However, there are a few big jobs that send more than 10 TB per month because 

they run a lot of tasks or require many migrations. 

Based on the network model that is presented in Section 3.2, the amount of data transferred by 

all jobs and their associated tasks is used to quantify the average power required for the 

transition. It is the power consumed by the communication network for the purpose of 

workload migrations. Figure 6 shows this average power classified by memory-state and disk-

state, and includes both the power needed at the routing layer (i.e. core routers) as well as the 

WDM transport systems. Various hop counts are shown to represent different network 
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configurations. We varied the core hops at 2, 5 and 10 to cover major configurations [48, 49]. 

For hop count 2, 5 and 10, the average power required to support migrations is around 65 KW, 90 

KW and 125 KW respectively. The average power used in the routing layer is proportional to 

the number of hops due to the fact that packets are processed by a smaller number of routers. On 

the other hand, power required in the optical transport systems is fixed because it is dependant 

on the average distance in the test configuration. The total network power is evenly attributed 

to memory and disk-state synchronisation. We observed that the network power required to 

support migration is at least two orders of magnitude less than the total power generated from 

renewable sources in the configuration. 

Datacentre Evacuation 

When power drops at one site, it is expected that hundreds of machines need to be migrated to 

other locations and must share the links. This evacuation process is affected by the bandwidth of 

interconnects. 

Evacuation is defined at the time required to migrate all applications that exceed the “current” 

energy capability of a specific datacentre. The system assumes that datacentres are interconnected 

using links dedicated to memory-state and disk-state synchronisation. As the storage 

synchronisation algorithm transfers proactively modified sectors to the destination [25], this 

process utilises a significant bandwidth, which was computed dur- ing simulations and factored 

out from the total interconnect capacity. The remaining bandwidth was then available for 

migrations and affected the duration of the evacuation process. Time for each individual 

migration accounted for both the pre-copy and final stop-and-copy phases. 

Three different interconnect speeds were chosen: 100 Gbps, 400 Gbps and 1 Tbps. The first two 

represent foreseeable deployments [50] while the latter is a reasonable future pre- diction. In fact, 

there are already some experiments that have successfully demonstrated transmission speeds in 

the order of ten terabits per second over a single fiber [51]. 

Figure 7 illustrates the cumulative percentage of the time required for datacentre evacuations 

in the case that each VM has access to 10 Gbps interface, has 7.5 GB memory (factor = 1.5 in 

Eq. 6) and its disk write rate is 0.5 MB/s. For 1 Tbps interconnect, the 90% and 97% of the 

evacuations happen in less than 2 minutes and 3 minutes respectively. In the case of 400 Gbps, 

durations for evacuation increase by a factor of 2. Even at 100 Gbps, delays can be tolerated 

at 15 minutes for 90% of evacuations. These results prove that (i ) migrations in the off-grid 

infrastructure happened in a timely manner and (ii ) support for this transition had no severe 

impact on the planning of datacentre operation especially for high-speed interconnects. 
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CASE STUDY B: MAP REDUCE JOBS 

Facebook Workload Trace 

As the work presented in the paper relies on trace-driven simulations, it was important to present a 

second case study that would give the reader some assurance about the results. 

The second case study focuses on a particular kind of workload: MapReduce jobs. The MapReduce 

paradigm for large-scale data processing and analysis is now receiving a lot of attention [52]. On 

high scale clusters, programmes created using this architecture automatically run in parallel and are 

failure resilient. Data mining, machine learning, online search, and sorting all employ MapReduce 

[53].We utilised the 3,000-machine primary Facebook production Hadoop cluster's MapReduce job traces. 

The trail spans six weeks, from October 1 to November 15, 2010, and includes information on approximately a 

million employment. Records in the trace include information such as input/shuffle/output sizes, start/finish 

timings, and the number of jobs in a particular job [27]. To match the magnitude of our simulations, we 

ramped increased the number of tasks. There is a limit of two Map and two Reduce processes per 

physical server. The provisioning of power and the network is identical to the previous case study. 

Computation Delay 

In this case study, we compared a test configuration that fully relies on renewable energy and has 

ten distributed datacentres with the centralised case. The amount of slack reserves for this test 

configuration was varied in our simulations. 

Specifically, we studied the average additional delay per job (as a percentage of its respective 

runtime in the centralised case) that was experienced for different computing capacities. Figure 

8 illustrates this metric for each month of the year 2009. The average delay per month for 0%, 

20% and 50% slack reserves ranges between 32%–96%, 6%–20% and 2%–6% respectively. We 

have found out that configurations with no slack reserves are less tolerant to variability of 

renewable energy (as illustrated by the spikes in the figure). 

 We made an estimate of the volume of data that must be moved during migrations.It is necessary to 

have local access to the Map input data while moving Map jobs. Furthermore, if the Map tasks are part 

of a job that loads data, output data must also be sent because it will be needed by activities that follow. 

Data from shuffle tasks has to be transferred to the destination when moving Reduce tasks. Furthermore, 

we presumptively copied all input data as a prerequisite for migration, regardless of the job's progress. 

We have observed that in order to support migration for MapReduce jobs in the test 

configurations, a 250 Gbps interconnect between datacentres is required. This is an average 

value computed by analysing the total input data transferred by all jobs per month for the 
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purpose of migration and assuming uniform distribution. We think this is a reasonable overhead 

considering future interconnects. 

There could be arguments advocating to pause computations and resume them later when power 

is available (as opposed to migrating computations to another datacentre where they can 

continue execution). In these “no-migration” cases, the system design is 

 

Figure 8: Average Additional Delay per MapReduce Job per Month for Different Addi- tional 

Computing Capacities Relative to the Centralised Case 

obviously much simpler and does not incur overheads associated with migrations. How ever, 

this might come at the cost of additional delays in computations. We compared the effect of 

having a configuration (50% slack reserves) with and without migration on average additional job 

delay. The average delay per job increases from 3% to 17% when migration is not employed 

(Figure 8). Although the traces are dominated by short-lived jobs [27], there are a few long-

lived jobs that experience significant delays during their executions due to intermittency of 

renewable energy. 

Related Work 

There are a few approaches that use renewable energy at the inter-datacentre scale. Liu et al. 

provide distributed algorithms that compute the optimal routing decisions for internet- scale 

systems which can be leveraged to route requests to areas where green energy is available [5]. 

Similarly, Le et al. discuss cost-aware load migration and placement across different 

geographical datacentres which take into account all electricity-related costs as well as transient 
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cooling effects [6, 15]. Chiu et al. propose to use low-cost workload migration to integrate 

renewable energy in the electricity grid. 

At the intra-datacentre scale, Deng et al. discuss the datacentre design trade-offs considering 

wind and solar resources [8]. Also, GreenSlot is a parallel batch job scheduler for datacentres 

which automatically selects the cheaper energy sources in order to reduce the overall cost [7]. 

Similarly, Gmach et al. illustrate an approach for matching power that may come from the grid, 

on-site renewable sources and energy storage sub-systems with the computing demand in 

datacentres [11]. They use power capping techniques at 

different levels of the datacentre to control demand with minimal impact on application 

performance. Using historical traces, their study estimates the amount of conventional power 

needed to smooth out renewable energy variability. Singh et al. implemented a system that can 

help maintain server availability in renewable energy-powered datacen- tres [14]. Their design 

relies on a downtime-bounded migration algorithm that can enable committing changes before 

the power is cut off a specific server. 

In a different complimentary area of research, the use of energy storage technologies, such as 

UPSs, to counteract the variability of renewable energy is investigated [12, 13]. Ren et al. 

provide a cost-based analysis on some of the aforementioned technologies [9]. 

4.CONCLUSIONS 

In this study, an off-grid computer architecture was used to assess the possibility of 

incorporating distant renewable energy. We created an all-encompassing model of this 

architecture. We then provided two case studies that calculated the related overheads based on 

traces from Facebook and Google. We spoke about how to supply this unusual architecture while 

balancing the need for a small growth in machines with the distribution of data centres necessary to ensure 

timely compute execution despite intermittent renewable energy sources. The quantity of dispersion and the 

number of slack reserves needed in the design really trade off inherently. To balance out fluctuations in power 

supply, we require additional dispersed datacenters. However, this necessitates adding more computers to 

enable the execution of applications as not all locations will be operational at once. We have discovered that a 

geo-distribution configuration that is provisioned with 50% more computing power can complete the 

desired number of computations with 2% delays. 
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