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ABSTRACT 

For autonomous mobile robot navigation and collision avoidance in an unknowable static and 

dynamic environment, this paper introduces a singleton type-1 fuzzy logic system (T1-SFLS) 

controller and Fuzzy-WDO hybrid. To optimise and fine-tune the input/output membership 

function parameters of the fuzzy controller, one uses the WDO (Wind Driven Optimization) 

algorithm. Based on the atmospheric motion of minuscule, microscopic air parcels moving 

over an N-dimensional search region, the WDO algorithm operates. With the help of the 

mobile robot Khepera-III, numerous computer simulations and real-world tests have been 

conducted to compare the performance of the suggested technique. The Fuzzy-WDO 

algorithm is shown to have good agreement for mobile robot navigation when compared to 

the T1-SFLS controller. 

1.INTRODUCTION 

One of the most difficult jobs is "path planning and control" of an autonomous mobile robot 

in a dynamic environment that is unknown. Fuzzy logic readily manages the ambiguity in the 

system since it is a mimic of human behaviour. Fuzzy logic is one of the techniques used in 

mobile robots that is frequently discussed. For mobile robot navigation, soft computing 

techniques like fuzzy logic [1], neural networks [2], neuro-fuzzy [4], and nature-inspired 

algorithms are frequently used. These include the Genetic Algorithm [8], Particle Swarm 

Optimization [12,13], Ant Colony Algorithm [10,11], Simu- lated Annealing Algorithm 

[14,15], and Bacterial Foraging Optimization [5]. Each technique (algorithm) does, however, 

have advantages and disadvantages. 

Over the past 20 years, there has been a lot of research done on the motion control problem of 

an autonomous wheeled mobile robot. For the best path tracking of wheeled mobile robots, 

Abadi and Khooban [1] presented Mamdani-type fuzzy logic controller integrated with 

random inertia weight Particle Swarm Optimization (RNW-PSO) (WMRs). Algabri et al[2] 

.'s combination of fuzzy logic and Other soft computing methods, such as Genetic Algorithm 

(GA), Neural Networks (NN), and Particle Swarm Optimization (PSO), can be used to 

optimise the fuzzy controller's membership function parameters and boost the mobile robot's 

navigational performance. Hui and Pratihar [3] have designed and developed a comparative 

study between two soft computing approaches, namely genetic-fuzzy and genetic-neural, and 

the traditional potential field method for an adaptive navigation planning of a car-like mobile 

robot moving in the presence of some dynamic obstacles. The sensor-based Adaptive Neuro 

Fuzzy Inference System (ANFIS) controller has been presented by Pothal and Parhi [4] for 

the navigation of single and multiple mobile robots in the highly congested environment. 
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 In order to proceed from any start location to the destination position in an unknown 

environment between moving obstacles, Montiel et al. [5] and Hossain et al. [6] investigated 

the application of the Bacterial Foraging Optimization (BFO) method in mobile robot 

navigation. The low-cost embedded neuro-fuzzy controller was created by Baturone et al. [7] 

for safe and collision-free navigation of an autonomous car-like robot among potential 

obstacles toward a goal configuration. To choose the optimum membership functions from a 

fuzzy system and manage a mobile robot in a partially understood environment, Ming et al. 

[8] developed a genetic algorithm. Castillo et al. [11] have developed a hybridization of an 

ACO algorithm with the PSO algorithm to optimise the membership function of a fuzzy 

controller in order to create an optimal intelligent controller for an autonomous wheeled 

mobile robot. Chung and co. 

PSO and fuzzy control algorithms have been developed by [12] to guide the robot through an 

uncharted terrain. The sensor-based PSO-fuzzy model has been put forth by Allawi and 

Abdalla [13] for the navigation of multiple mobile robots. Where the PSO is utilised to 

establish the best input/output membership functions and fuzzy type-2 controllers' best rules. 

The simulated annealing metaheuristic approach has been suggested by Yanar and Akyurek 

[14] for tweaking Mamdani type fuzzy models.  

The difficulty of creating and fine-tuning the appropriate membership function grade is one 

of the main issues with fuzzy logic [22]. As a result, the authors have sought to use the WDO 

algorithm to try and overcome this problem. In this article, a hybrid fuzzy-WDO method for 

mobile robot navigation and collision avoidance in an unidentified static and dynamic 

environment has been described. To adapt and optimise the antecedent and consequent 

parameters of the generalised bell-shaped membership function, the WDO is combined with 

the fuzzy controller. A population-based iterative global optimization approach for problems 

involving several dimensions and models, the WDO [16e18] method has the ability to impose 

restrictions on the search domain. A number of tiny, simultaneous air parcels or prospective 

solutions are kept in the search domain by this technique. The membership function 

parameters (objective function), which are tuned based on the fitness function of that 

solution, are used to evaluate each air parcel for each iteration of the algorithm. The main 

goal of this study is to use the WDO algorithm to optimise the fuzzy controller's membership 

function parameters. 

2.T1-SFLS controller for the mobile robot navigation 

In this section, the T1-SFLS rule-based controller has been designed and implemented 

for mobile robot navigation and 

 
Fig. 1.  The structure of a T1-SFLS controller for mobile robot navigation. 
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Fig. 3. Fuzzy membership functions for the outputs (mr , and ml). 

Table 1 

Fuzzy rules set. 

If (df is Far) and (dl is Far) and (dr is Far) then (mr is High) and (ml is Low) 

If (df is Near) and (dl is Near) and (dr is Near) then (mr is Low) and (ml is High) If 

(df is Far) and (dl is Near) and (dr  is Far) then (mr  is Low) and (ml  is High) If (df 

is Far) and (dl is Far) and (dr  is Near) then (mr  is High) and (ml  is Low) If (df is 

Near) and (dl is Far) and (dr  is Far) then (mr  is Low) and (ml  is High) If (df is 

Near) and (dl is Near) and (dr is Far) then (mr is Low) and (ml is High) If (df is 

Near) and (dl is Far) and (dr is Near) then (mr is High) and (ml is Low) 

Table 2 

Adjusting parameters of the inputs before optimization. 

 

Inputs Membership 

function 
a b c 

df Near 65 2.5 20 

 Far 65 2.5 150 

dl Near 65 2.5 20 

 Far 65 2.5 150 

dr Near 65 2.5 20 

 Far 65 2.5 150 

If (df  is Far) and (dl is Near) and (dr is Near) then (mr is Low) and (ml  is High)     
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Fig. 4. The general structure of the generalized bell-shaped membership function. 

collision avoidance in an unknown static and dynamic environ- ment. The proposed 

controller controls the right motor velocity and left motor velocity of the mobile robot 

using sensory data inter- pretation. The T1-SFLS controller has three inputs: Forward 

Table 3 

Adjusting parameters of the outputs before optimization. 

Outputs Membership 

function 

a b c 

mr Low 5 2.5 6.7 

 High 5 2.5 16.7 

ml Low 5 2.5 6.7 

 High 5 2.5 16.7 

 

illustrated in Figs. 2 and 3, respectively. The fuzzy rule set of the T1- SFLS controller is 

described in Table 1. The two generalized bell- shaped (Gbell) membership functions are 

used for inputs and outputs. The range of inputs is divided into two linguistic variables: 

Near and Far. These inputs are located at 20 cme150 cm. Similarly, the two Gbell 

membership functions (MFs) Low and High respec- tively have been used for the 

outputs, and it is located at 6.7 cm/s to 

16.7 cm/s. The designed T1-SFLS controller is directly implemented in the mobile robot 

for simulations and experiments. The T1-SFLS controller is composed through 

Mamdani-type  fuzzy  model  in  the following form 

Obstacle Distance (df ), Left Forward Obstacle Distance (dl ) and Rulen :  

If dis d ; d is d; and dr is d 

Right Forward Obstacle Distance (dr ); and two outputs: Right 

f fðiÞ l 

lðjÞrðkÞ 

Motor Velocity (mr ) and Left Motor Velocity (ml ), which are logi- cally connected by 

eight rules (see Fig. 1). The T1-SFLS controller receives  inputs  (obstacle  distances)  

from  the  front,  left,  and the right group of sensors of the robot, and output from T1-

SFLS controller is right motor velocity and left motor velocity of the mobile robot. These 

sensors read the obstacle from 20 cm to 150 cm approximately. The input and output 

variables of the controller are Then mr is mrðijkÞ and ml is mlðijkÞ 
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P8 

where n ¼ 1, 2, …,8 (eight rules), the i ¼ 1, 2, j ¼ 1, 2 and k ¼ 1, 2 because df , dl and dr 

have two Gbell membership functions each. The df ðiÞ, dlðjÞ, and drðkÞ are the fuzzy 

sets of the inputs df , dl , and dr respectively. Similarly, the mrðijkÞ, and mlðijkÞ are the fuzzy 

sets of the outputs mr, and ml respectively. The fuzzy set (inputs and outputs) uses the 

following Gbell membership function. 

 

 
 

Fig. 5. Air parcels representation of the WDO algorithm. 

Let df , dl, and dr are presented by x1, x2, and x3 respectively. Similarly, mr, and ml are 

denoted by y1, and y2 respectively. 

 

The defuzzification of the outputs (y1 and y2) are accomplished by the weighted average 

method 

 

Fig. 6. Fuzzy membership functions for the inputs (df , dl , and dr ) after optimization. 

1. Fuzzy-WDO algorithm for the mobile robot navigation 

 

WDO [16] algorithm is inspired by the earth's atmosphere, 

y 
P8 

1ðmn1ðx1Þ$mn2ðx2Þ$mn3ðx3ÞÞ$y1 

(7)where the wind blows are trying to equalize the horizontal 

1  ¼ n¼ 

n¼1ðmn1ðx1Þ$mn2ðx2Þ$mn3ðx3ÞÞimbalance in the air pressure. WDO is a new type nature-

inspired global optimization based on atmospheric motion developed by Bayraktar et al. 

[16] in 2013. This method is working on the 

y2 ¼8   
1ðmn1ðx1Þ$mn2ðx2Þ$mn3ðx3ÞÞ$y2(8)population-based iterative heuristic global 

optimization algorithm for multi-dimensional and multi-modal problems with the 

poten- 
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n 

 
¼1ðmn1ðx1Þ$mn2ðx2Þ$mn3ðx3ÞÞ 

The adjusting parameters a, b, and c of the inputs and outputs are listed in Table 2 and 

Table 3, respectively, which will be opti- mized through the WDO algorithm in Section 3 

below.tial to implement constraints on the search domain. WDO is similar to other 

nature-inspired optimization algorithms, in which  population-based heuristic iterative 

process can be found for solving multi-dimensional optimization problems [18]. At its 

 

 
 

Fig. 7. Fuzzy membership functions for the outputs (mr , and ml ) after optimization. 

Table 4 

Adjusting parameters of the inputs after optimization. 

 

Inputs Membership 

function 

a b c 

df Near 55.11 2.14 25 

 Far 59.6 1.88 149.4 

dl Near 58.3 2.44 22.4 

 Far 62.41 1.76 148.3 

dr Near 57.42 2.33 23.1 

 Far 60.29 1.55 148.9 

 

 

Table 5 

Adjusting parameters of the outputs after optimization. 

 

Outputs Membership a b c 
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function 

mr Low 3.61 2.601 6.515 

 High 4.22 2.14 16.2 

ml Low 3.97 2.21 5.96 

 High 4.32 2.96 16.4 

 

 

 

 

 

 

 

 

 

 

 

 

center, a population of infinitesimally small air parcels navigates over an N-dimensional 

search space, employing Newton's second law of motion that is used to express the 

motion of air parcels inside the earth's atmosphere. As compared to other particle based 

opti- mization algorithm (e.g., PSO), the WDO algorithm has additional terms in the 

velocity update equation such as Gravitation and Co- riolis forces, which provides 

robustness and extra degrees of freedom to the algorithm. 

The WDO algorithm is working based on the atmospheric mo- tion of infinitesimal 

small air parcels navigating over an N- dimensional search domain. The starting step 

of this algorithm is supported by the Newton's second law of motion, which provides 

accurate results when applied to the analysis of atmospheric mo- tion. It states that the 

total force applied on an air parcel causes it to accelerate with an acceleration a in the 

same direction as the applied total force. 

 

r$a ¼ 
X 

Fi (9) 

where r is the density of air for an infinitesimally small air parcel, and Fi represents all 

the individual forces acting on the air parcel. To relate the air pressure to the air parcel's 

density and temperature, the ideal gas law can be utilized and is given by 
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¼ ¼ 

unew ¼ ð1 — aÞ$ucur — g$xcur þ 

.

RT
.1 

— 1
..

xopt — xcur

Σ
Σ

 
   !

c$u 

¼ — 

cur 

¼ 

Fig. 8. Mobile robot navigation between the obstacles using (a) T1-SFLS and (b) 

Fuzzy- WDO controller. 

FG ¼ r$dV $g (13) 

FC ¼ —2$U$u       (14) 

where, VP is the pressure gradient, dV represents the infinite air volume, U represents the 

rotation of the earth, g is the gravitational acceleration, a is the friction coefficient and u 

is the velocity vector 

of the wind. 

The sum of all forces (gravitational force, pressure gradient force, friction force, and 

Coriolis force) described above can be entered on the right-hand side of Newton's second 

law of motion given in equation (9), which leads to 

Du 

$ 
Dt 

¼ ðr$dV $gÞþ ð—VP$dV Þþ ð—r$a$uÞþ ð—2$U$uÞ  (15) 

where  the  acceleration   term   in   equation   (9)   is   rewritten   as a Du=Dt, and a time 

step Dt 1 is assumed for simplicity. For an infinitesimally small, dimensionless air parcel, 

the volume is set as dV ¼ 1, which simplifies equation (15) to 

r$Du ¼ ðr$gÞþ ð—VPÞþ ð—r$a$uÞþ ð—2$U$uÞ (16) 

Putting the ideal gas law equation (10) in equation (16), the density r can be written in 

terms of the pressure, with temperature and the universal gas law constant 

 

 

 

 Fig. 9. Mobile robot navigation between the walls using (a) T1-SFLS and (b) Fuzzy- 

WDO controller. 

P ¼ rRT (10) 

where P is the pressure, R is the universal gas constant, and T is the temperature. 

Four major forces can be included in equation (9) that either where unew is the 

velocity in the next iteration, ucur is the velocity in current iteration, xcur is the current 

location of the air parcel, xopt is the optimum location of the air parcel, i represents the 

ranking between all air parcels, u
other

 
dim

 is the velocity influence from another 

randomly chosen dimension of the same air parcel, and all other   coefficients   are   

combined   into   a   single   term   c (i.e.,c       2,U,RT ). equation (17)  represents the 

final form of the ve- 

locity update utilized in WDO [16,19]. The following function up- dates the position of 

the air parcel 

xnew ¼ xcur þ ðunew$DtÞ (18) 

where xnew is the new position of the air parcel in the next iteration. If the new velocity 

r 
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unew exceeds the initialize maximum velocity (umax 0.3) in any dimension, then the 

velocity in that dimension is limited according to the following condition 

cause the wind to move in a certain direction at a certain velocity or that deflect it from 

its existing path. The most observable force causing the air to move is the pressure 

gradient force FPG defined in 

newumax if unew > umax 

—umax if unew < — umax 

(19) 

 

equation (11). Another force is the friction force FF defined in equation (12), which 

simply acts to oppose the motion started by the pressure gradient force. In our three-

dimensional physical at- mosphere, the gravitational force FG in equation (13) is a 

vertical force directed toward the earth's surface. The Coriolis force FC in equation 

(14) is caused by due to the rotation of the earth and deflects the path of the wind 

from one dimension to another. 

 

FPG ¼ —VP$dV (11) 

FF ¼ —r$a$u (12) 

where the direction of motion is preserved but the magnitude is limited to be no more 

than umax at any dimension and u
*
 rep- resents the adjusted velocity after it is limited to 

the maximum speed. 

The pseudo-code of the WDO algorithm can be summarized as follows: 

Step 1. Start. 

Step 2. Initialize the population size (i.e., group of air parcels), number of dimensions of 

the optimization problem, maximum number of iterations, coefficients (such as RT , g, a, 

c, umax), pressure function (fitness function of the ptimization prob- lem), lower and 

u 

.

¼
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upper boundaries of the optimization problem.

 

Fig. 10. Mobile robot navigation in the dynamic environment using Fuzzy-WDO 

controller. 

Table 6 

The simulation results of T1-SFLS and Fuzzy-WDO controllers. 

 

Figure 

no. 

Controll

er 

Navigation path 

length /cm 

Navigation 

time /s 

Fig. 8 T1-SFLS 78.6 7.2 

 Fuzzy-

WDO 

74.4 6.9 

Fig. 9 T1-SFLS 103.7 9.1 

 Fuzzy-

WDO 

98.2 8.7 
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Step 3. Assign random position and velocity of the air parcels. Step 4. Evaluate the 

pressure (fitness) values of each air parcel at its current position. 

Step 5. Once the pressure values have been evaluated, the pop- ulation is ranked based 

on their pressure (ascending order), and the velocity updated according to equation 

(17) along with the restrictions are given in equation (19). 

Step 6. Update the position of the air parcel for the next iteration according to equation 

(18) and also check the boundaries of the air parcel. 

Step 7. Stop if a maximum number of iterations are achieved, else go to step 4. 

When the maximum number of iterations is completed, the best pressure (fitness) value is 

achieved. 

This section describes the WDO algorithm used for the  

 
Fig. 11. Mobile robot navigation in an environment without obstacle using fuzzy 

controller [23]. 

 

membership function parameter optimization of the T1-SFLS controller for the optimum 

navigation and collision avoidance in an unknown static and dynamic environment. One 

major problem with the fuzzy logic is the difficulty of constructing and tuning the 

 

 

 
 

Fig. 12. Mobile robot navigation in an environment without obstacle using Fuzzy- 

WDO controller. 
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Fig. 13. Mobile robot navigation in an environment with four obstacles using fuzzy 

controller [23]. 

 

Fig. 14. Mobile robot navigation in an environment with four obstacles using Fuzzy- 

WDO controller. 

Table 7 

The simulation result comparison between the fuzzy controller [23] and proposed 

Fuzzy-WDO controller. 

Figure 

no. 

Method Navigation path 

length /cm 

Fig. 11 Fuzzy controller 

[23] 

181 

Fig. 12 Fuzzy-WDO 

controller 

165 

Fig. 13 Fuzzy controller 

[23] 

183 
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Fig. 14 Fuzzy-WDO 

controller 

173 

 

 

Fig. 15. Mobile robot navigation between many obstacles using fuzzy model [24]. 

 

Fig. 16. Mobile robot navigation between many obstacles using Fuzzy-WDO 

controller. 

 

Table 8 

Comparison of simulation results between fuzzy model [24] over proposed 

Fuzzy- WDO controller. 

 

Figure 

no. 

Method Navigation path 

length /cm 

Fig. 15 Fuzzy model 

[24] 

91 

Fig. 16 Fuzzy-WDO 

controller 

84 
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Fig. 17. Infrared proximity sensor distribution of Khepera-III mobile robot. 

correct membership function grade [22]. Because of this problem, the WDO algorithm is 

used to tune the adjusting parameters of the inputs and outputs. From Section 2, two Gbell 

membership func- tion are considered for the inputs (df , dl, and dr) and outputs (mr , and  

ml). Each  Gbell membership  function has  three  adjusting parameters (a, b, and c). 

Therefore, each input has six adjusting pa- rameters. Similarly, each output has six 

adjusting parameters. So the total number of adjusting parameters is to be thirty {5 (3 

inputs þ 2 outputs) × 2 (membership function) × 3 (adjusting parameters a, b, and c) 

¼ 30}. 

The ranges of adjusting parameters are defined as [amin, amax] [bmin, bmax] and [cmin, cmax] 

respectively, for lower and the upper boundary of the WDO algorithm. The amin and 

amax are 30 and 65 for the membership function of the inputs. The bmin and bmax are 1 and 

3.5 for the membership function of the inputs. The parameters cmin and cmax are 20 and 150 

for the membership function of inputs respectively. Similarly, the amin and amax are 2 and 

5 for the membership function of outputs. The bmin and bmax are 1 and 3.5 for the 

membership function of the outputs. The parameters cmin and cmax are located at 6.7 and 

16.7 for the membership function of outputs respectively. Fig. 5 shows the air parcels 

representation of 
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Fig. 18. Real-time navigation of Khepera-III mobile robot between the obstacles using 

T1-SFLS and Fuzzy-WDO controller. 

the WDO algorithm. The optimized membership functions of the inputs (df , dl, and dr ) and 

the outputs (mr, and ml) are shown in Figs. 6 and 7, respectively. The results of the adjusting 

parameters (a, b, and c) of the inputs and outputs after optimization are listed in Table 4 and 

Table 5, respectively. 

The most important step in applying the WDO algorithm is to select the fitness function, 

which is used to evaluate the optimum pressure of the air parcels. In during the optimization 

process, the combined root mean square errors (CRMSE) are used to evaluate the fitness of 

the fuzzy controller controller covers shorter distance to reach the goal as compared to 

previous model [23] because WDO algorithm adjusts the membership function of the 

fuzzy controller, which provides better result compared to the standalone fuzzy model. 

Besides, the pro- posed Fuzzy-WDO controller also helps the mobile robot to reach the 

goal without taking any intermediate point. And due to this, it takes less time to reach the 

goal as compared to previous model [23]. Table 7 illustrates the path traced (in cm) by 

the robot to reach the goal using proposed controller and previous model [23]. 

Figs. 15 and 16 show the mobile robot navigation result comparison between the fuzzy 

model [24] and proposed Fuzzy-WDO controller, respectively. From the simulation 

results, it can be seen that the proposed controller provides the better trajectory 

 CRMSE ¼ RMSEmr   þ RMSEml (22) 

where m
actual

 and m
actual

 are the actual value of right and left motor model. Table 8 shows the 

path covered (in cm) by the robot to reach 

the goal using proposed controller and previous model [24]. The centimetre measurements 
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are taken on the proportional basis. 

 

SIMULATION RESULTS 

 

This section describes the successful simulation results using T1-SFLS and Fuzzy-WDO 

controllers in the various unknown static and dynamic environments. The simulations are 

conducted using the MATLAB software on the HP 3.40 GHz processor. Figs. 8 and 9 show 

the navigation result of the mobile robot between the ob- stacles and walls respectively, 

using the T1-SFLS and Fuzzy-WDO controller in the unknown environments. Similarly, 

Fig. 10 dem- onstrates the navigation of a mobile robot in an unknown envi- ronment with 

the presence of two dynamic obstacles using Fuzzy- WDO controller. It is assumed that the 

position of the start point and goal point are known. But the positions of all the obstacles in 

the environment are unknown for the robot. In the simulation re- sults, the green and red 

color trajectory indicates the path gener- ated by the T1-SFLS and Fuzzy-WDO controllers 

respectively. Simulation results show the Fuzzy-WDO controller gives smooth and optimal 

path compared to the T1-SFLS controller. Table 6 shows the navigation path length and 

time taken by the robot us- ing the T1-SFLS and Fuzzy-WDO controller in the various 

unknown environments. 

 

COMPARISON WITH PREVIOUS WORKS 

This section describes the computer simulation result compar- ison between the previous 

model [23] and proposed Fuzzy-WDO controller in the same path planning problems. In the 

article [23], the authors have used two simple fuzzy controllers such as tracking fuzzy logic 

control (TFLC) and obstacle avoidance fuzzy logic con- trol (OAFLC) without adjusting its 

membership function for mobile robot navigation. Figs. 11 and 12 show the mobile robot 

navigation in  the  same  environment without obstacle  using  fuzzy controller 

[23] and proposed Fuzzy-WDO controller, respectively. Similarly, Figs. 13 and 14 present 

the path covered by the robot in the same environment with the four obstacles using fuzzy 

controllers [23] and proposed Fuzzy-WDO controller, respectively. From the simu- lation  

figures,  it  can  be  seen  that  the  proposed  Fuzzy-WDO Khepera-III mobile robot 

description 

 

The experiments are conducted using the Khepera-III mobile robot in unknown 

environments. The Khepera-III mobile robot has two wheels controlled by two DC servo 

motors and one caster wheel. The diameter and height of the robot are 13 cm and 7 cm 

respectively. The Khepera-III mobile robot is equipped with nine infrared proximity sensors 

and five ultrasonic sensors, as shown in Fig. 17. The Infrared proximity sensor reads 

obstacles up to 30 cm, and the ultrasonic sensor reads obstacles from 20 cm to 4 m 

approximately. In this study, we have set the minimum and maximum velocity of Khepera-

III mobile robot between the 6.7e16.7 cm/s. 

  

 Experiments 

In the experiments, the controllers are implemented in the Khepera-III mobile robot 

using HP laptop. The width and height of the experimental platform are 250 cm and 250 

cm, respectively. Fig. 18 and Fig. 19 shows the real-time navigation of the Khepera-III 
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mobile robot in unknown environments with the obstacles and walls, respectively. In 

Fig. 18, the start position of the robot is (175, 

100) cm, and the position of the goal is (0, 200) cm. The starting angle between the robot 

and the goal is 29.74○. Similarly, in Fig. 19, the start position of the robot is (50, 50) cm, 

and the goal position is (250, 200) cm. The starting angle between the robot and the goal is 

36.87○. In the experiments, it is assumed that the position of the start point and goal point 

are known, but the positions of all the obstacles in the environment are unknown for the 

robot. The T1- SFLS and Fuzzy-WDO controller generate the motor velocity con- trol 

command for obstacle avoidance using on-board sensor in- formation. The successful 

experimental results in the various unknown environments are shown below to verify the 

effective- ness of the T1-SFLS and Fuzzy-WDO controllers. Table 9 shows the 

experimental path length and time taken by the Khepera-III mobile robot to reach target 

using the T1-SFLS and Fuzzy-WDO controllers in the various unknown environments. 

Tables 10 and 11 present the traveling path length and navigation time comparison between 

the simulation and experimental results. In the comparison study be- tween the simulation 

and experiments, it is observed that some errors have been found, these happen due to 

slippage and friction during real time experiment. 

 

Fig. 19. Real-time navigation of Khepera-III mobile robot between the walls using T1-

SFLS and Fuzzy-WDO controller. 

7. CONCLUSION 

In this work, the mobile robot navigation has been addressed using the T1-SFLS controller 

and the hybrid Fuzzy-WDO algorithm. The antecedent and consequent parameters of the 

fuzzy controller are optimised using a new population-based optimization approach called 

Wind Driven Optimization (WDO). Through simulations and in-the-moment trials in 

various contexts, the proposed methods are successfully validated. Results from simulations 
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and experiments show that the Fuzzy-WDO controller performs better than the T1-SFLS 

controller. 

REFERENCES 

[1] Abadi DNM, Khooban MH. Design of optimal mamdani-type fuzzy controller 

for nonholonomic wheeled mobile robots. J King Saud University-Engineering Sci 

2015;27(1):92e100. 

[2] Algabri M, Mathkour H, Ramdane H, Alsulaiman M. Comparative study of soft 

computing techniques for mobile robot navigation in an unknown environ- ment. 

Comput Hum Behav 2015;50:42e56. 

[3] Hui NB, Pratihar DK. A comparative study on some navigation schemes of a 

real robot tackling moving obstacles. Robotics Computer-Integrated Manuf 

2009;25(4):810e28. 

[4] Pothal JK, Parhi DR. Navigation of multiple mobile robots in a highly clutter 

terrains using adaptive neuro-fuzzy inference system. Robotics Aut Syst 2015;72:48e58. 

[5] Montiel O, Orozco-Rosas U, Sepulveda R. Path planning for mobile  robots  

using bacterial potential field for avoiding static and dynamic obstacles. Expert Syst 

Appl 2015;42(12):5177e91. 

[6] Hossain MA, Ferdousand I. Autonomous robot path planning in dynamic 

environment using a new optimization technique inspired by bacterial foraging 

technique. Robotics Aut Syst 2015;64:137e41. 

[7] Baturone I, Gersnoviez A, Barriga A. Neuro-Fuzzy techniques to optimize an 

FPGA embedded controller for robot navigation. Appl Soft Comput 2014;21: 95e106. 

[8] Ming L, Zailin G, Shuzi Y. Mobile robot fuzzy control optimization using ge- 

netic algorithm. Artif Intell Eng 1996;10(4):293e8. 

[9] Liang Y, Xu L, Wei R, Hu H. Adaptive fuzzy control for trajectory tracking of 

mobile robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems 

(IROS), 2010, pp. 4755e4760. 

[10] Purian FK, Sadeghian E. Mobile robots path planning using ant colony opti- 

mization and fuzzy logic algorithms in unknown dynamic environments. In: IEEE 

International Conference on Control, Automation, Robotics and Embedded Systems 

(CARE), 2013, pp. 1e6. 

[11] Castillo O, Martinez-Marroquin R, Melin P, Valdez F, Soria J. Comparative 

study of bio-inspired algorithms applied to the optimization of type-1 and type-2 

fuzzy controllers for an autonomous mobile robot. Inf Sci 2012;192: 19e38. 

[12] Allawi ZT, Abdalla TY. A PSO-optimized type-2 fuzzy logic controller for 

navigation of multiple mobile robots. In: IEEE International Conference on Methods 

and Models in Automation and Robotics (MMAR), 2014, pp. 33e39. 

[13] Yanar TA, Akyurek Z. Fuzzy model tuning using simulated annealing. Expert 

Syst Appl 2011;38(7):8159e69. 

[14] Martinez-Alfaro H, Gomez-Garcia S. Mobile robot path planning and tracking 

using simulated annealing and fuzzy logic control. Expert Syst Appl 1998;15(3):421e9. 

[15] Bayraktar Z, Komurcu M, Bossard JA, Werner DH. The wind driven optimi- 

zation technique and its application in electromagnetics. IEEE Trans Antennas 

Propag 2013;61(5):2745e57. 

[16] Kuldeep B, Singh VK, Kumar A, Singh GK. Design of two-channel filter 

bank using nature inspired optimization based fractional derivative constraints. ISA 

http://refhub.elsevier.com/S2214-9147(16)30082-4/sref1
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref1
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref1
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref1
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref1
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref2
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref2
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref2
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref2
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref2
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref3
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref3
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref3
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref3
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref3
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref4
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref4
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref4
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref4
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref5
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref5
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref5
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref5
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref5
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref6
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref6
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref6
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref6
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref6
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref7
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref7
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref7
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref7
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref8
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref8
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref8
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref11
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref11
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref11
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref11
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref11
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref11
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref14
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref14
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref14
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref15
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref15
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref15
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref15
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref16
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref16
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref16
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref16
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref16
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref17
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref17
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref17
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref17
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref17


JuniKhyat                                                                                                      ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                                       Vol-11 Issue-01 March 2021 

Page | 1367                                                                                 Copyright @ 2021 Authors 

Trans 2015;54:101e16. 

[17] Bhandari AK, Singh VK, Kumar A, Singh GK. Cuckoo search algorithm and 

wind driven optimization based study of satellite image segmentation for multilevel 

thresholding using Kapur's entropy. Expert Syst Appl 2014;41(7): 3538e60. 

[18] Bayraktar Z, Turpin JP, Werner DH. Nature-inspired optimization of high- 

impedance metasurfaces with ultrasmall interwoven unit cells. IEEE An- tennas Wirel 

Propag Lett 2011;10:1563e6. 

[19] Mohanty PK, Parhi DR. A new hybrid optimization algorithm for multiple 

mobile robots navigation based on the CS-ANFIS approach. Memetic Comput 

2015;7(4):255e73. 

[20] Wong C, Wang H, Li S. PSO-based motion fuzzy controller design for mobile 

robots. Int J fuzzy Syst 2008;10(1):284e92. 

[21] Tahmasebi P, Hezarkhani A. A hybrid neural networks-fuzzy logic-genetic 

algorithm for grade estimation. Comput Geosci 2014;42:18e27. 

[22] Faisal M, Hedjar R, Al Sulaiman M, Al-Mutib K. Fuzzy logic navigation and 

obstacle avoidance by a mobile robot in an  unknown dynamic environment. Int J Adv 

Robotic Syst 2013;10(37):1e7. 

[23] Cherroun L, Boumehraz M. Fuzzy behavior based navigation approach for 

http://refhub.elsevier.com/S2214-9147(16)30082-4/sref17
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref18
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref18
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref18
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref18
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref18
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref18
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref19
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref19
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref19
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref19
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref19
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref20
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref20
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref20
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref20
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref20
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref21
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref21
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref21
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref22
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref22
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref22
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref23
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref23
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref23
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref23
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref23
http://refhub.elsevier.com/S2214-9147(16)30082-4/sref24

