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Abstract

Solving ordinary differential equations (ODEs) with traditional techniques is complicated and
time taking task. Traditional techniques of ODE solvers are providing approximate solution. To
overcome that drawback and to get exact solution many researchers implemented new techniques
which reduces time complexity and gives better solution for given ODE with optimization. In this
proposed technique we used generic method of solving ODEs using adaptive differential evolution.
Obtained approximate solution is given to improved Fourier periodic expansion function with least

square weight method for solving ODEs with optimal solution.
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l. Introduction

Ordinary Differential Equations

The Ordinary Differential Equation (ODE) solvers in MATLAB® solve initial value
problems with a variety of properties. The solvers can work on stiff or nonstiff problems, problems

with a mass matrix, differential algebraic equations (DAES), or fully implicit problems.

Bolution of van der Pol Equation, i = 1 Dall trajectary and the events

Figl. Examples for which ODEs need to be solved

Choosing an ODE Solver
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Basic Solver Selection for ODEs in MATLAB

ODEA45 performs well with most ODE problems and should generally be your first choice of
solver. However, ODE23, ODE78, ODE89 and ODE113 can be more efficient than ode45 for
problems with looser or tighter accuracy requirements. Some ODE problems exhibit stiffness, or
difficulty in evaluation. Stiffness is a term that defies a precise definition, but in general, stiffness

occurs when there is a difference in scaling somewhere in the problem.

For example, if an ODE has two solution components that vary on drastically different time
scales, then the equation might be stiff. You can identify a problem as stiff if nonstiff solvers (such
as ode45) are unable to solve the problem or are extremely slow. If you observe that a nonstiff solver
is very slow, try using a stiff solver such as ODE15s instead. When using a stiff solver, you can

improve reliability and efficiency by supplying the Jacobian matrix or its sparsity pattern.

Below table provides general guidelines on when to use each of the different solvers.
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This table contains a list of the available ODE and DAE example files as well as the solvers
and options they use in MATLAB.

Il. Literature Survey for ODEs Solving

Differential equations can describe nearly all systems undergoing change. They are
ubiquitous is science and engineering as well as economics, social science, biology, business, health
care, etc. Many researchers and mathematicians have studied the nature of Differential Equations and

many complicated systems that can be described quite precisely with mathematical expressions.

There are basic 2 types of differential equations as ,

Ordinary differential equations Partial differential equations

Class | Class 2 Class 3

dy @) dy (x.y) 0u+ du
dx_fx dx—fx"v X ox yay""

Swiss mathematicians, brothers Jacob Bernoulli (1654-1705) and Johann Bernoulli (1667-
1748), in Basel, Switzerland, were among the first interpreters of Leibniz' version of differential

calculus. They were both critical of Newton's theories and maintained that Newton’s theory of
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fluxions was plagiarized from Leibniz' original theories, and went to great lengths, using differential
calculus, to disprove Newton’s Principia, on account that the brothers could not accept the theory,

which Newton had proven, that the earth and the planets rotate around the sun in elliptical orbits. [3]

The first book on the subject of differential equations, supposedly, was Italian mathematician
Gabriele Manfredi’s 1707 On the Construction of First-degree Differential Equations, written
between 1701 and 1704, published in Latin. [4] The book was largely based or themed on the views
of the Leibniz and the Bernoulli brothers. Most of the publications on differential equations and
partial differential equations, in the years to follow, in the 18th century, seemed to expand on the
version developed by Leibniz, a methodology, employed by those as Leonhard Euler, Daniel
Bernoulli, Joseph Lagrange, and Pierre Laplace.

In 1739, Swiss mathematician Leonhard Euler began using the integrating factor as an aid to
derive differential equations that were integrable in finite form [5] The circa 1828 work of English
physical mathematician George Green seems to have something to do with defining a test for an
“integrable” or conservative field of force (or somehow has connection to thermodynamics via
William Thomson); such as in terms of the later 1871 restylized “curl” notation (test of integrability)

of James Maxwell (or possibly the earlier work of Peter Tait). [10]
I11. Proposed Methodology
Generic Method:

1.1 Improved Fourier Periodic Expansion Function

This immedalely aves any coeflicant 8, of the Irigonometrical secles Sar 9(y) far any function which has such ar m\ L works hecause ¥ ¢ has such an
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1.2 Least Square Weight Method

The method of ordinary least squares assumes that there is constant variance in the errors
(which is called homoscedasticity). The method of weighted least squares can be used when the
ordinary least squares assumption of constant variance in the errors is violated (which is called

heteroscedasticity).

Advantages of proposed Technique
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Nearly exact solution
Less time Complexity
Applications of Proposed Technique

e science and engineering
e economics,

e social science,

e Diology,

e business,

e health care, etc

IV. Result Analysis
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Fig 4.1 . Functions available in matlab for Solving Ordinary Differential Equation
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For solving differential equation matlab needs 3 steps as,
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Step1l.: initialising condition for Matlab ODE solver
Step2: Solving system equation using Matlab tools
Step3: Getting optimal solution and plotting

Example :

Output

One Transistor Ampifier DAE Problem Solved by ODE2ST
rgrd Vatage U1}

el Valage U (1

Fig. 4.2 Output of ODE23T DAE solution
V. Conclusion

With the help of proposed technique ODEs are solved with optimal solution. In proposed
technique we used combination of two techniques as improved Fourier periodic expansion function

and least square weight method.
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