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Abstract: 

              We describe a mathematical model for the interaction between three species ecological model 

consists of first (x), second (y) and third species (z). The first species is preying on second, second 

species is ammensal on the third. A time delay is included in the interaction first and second species. 

The system is explained by couple of delay differential equations. The co-existing state is identified 

and also characterizes the local stability analysis at this state. Parametric Hopf bifurcation, instability 

nature is identified and supported with a suitable numerical simulation using MATLAB. 
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1. Introduction 

Differential equations are most popular in explaining the mathematical models I ecology. The stability 

analysis concept is explained in detail by Braun [9] and Simon’s [10].  The ecological models are 

initiated by studied Lokta [1] and Volterra [2]. The Mathematical models   and its stability analysis 

discussed by Kapur [3, 4]. qualitative analysis plays a big role in analysing these models due to the 

difficulty in finding analytical solutions due to the non-linearity of the models arise ecology. The 

qualitative analyses of ecological models are widely studied by authors [5-7]. The stability of analysis 

of delay-differential equations are significant in ecology. The time delays are influence the dynamics 

of the system and tend to destabilize or stabilizes the system. The systems with delay arguments and 

the qualitative analysis are widely discussed by the authors [11-13]. The nature of the delay argument 

cause unbounded growth and extinction of populations leads to instability tendency of models. The 

delay argument may classify in to continuous, discrete, distributed etc. The time lags can be discrete 

or continuous. These lags will change the stable equilibrium to unstable or vice-versa. The delay 

models in population dynamics are widely studied by paparao [14-21].  In this paper we take a logistic 

growth model of three species for investigation. In this model first species is preying on second and 

second is ammensal to third species. A discrete time lag is incorporated in the interaction of first and 

second species. The model is studied by a couple of delay-differential equations. The co-existing 

equilibrium point is identified and discussed the dynamics at this point. Numerical simulation is carried 

out carried out in support of stability analysis. It is shown that the system exhibits instability trendies 

leads to Hopf bifurcation. 

 

2. Model Equations: 

The proposed ecological system can be modelled into the following system of equations given by 
𝑑𝑥

𝑑𝑡
= 𝑎1𝑥 (1 −

𝑥

𝑘1
) + 𝑎12𝑥(𝑡 − 𝜏)𝑦(𝑡 − 𝜏) 

𝑑𝑦

𝑑𝑡
= 𝑎2𝑦 (1 −

𝑦

𝑘2
) − 𝑎21𝑥(𝑡 − 𝜏)𝑦(𝑡 − 𝜏)     (2.1) 

𝑑𝑧

𝑑𝑡
= 𝑎3𝑧 (1 −

𝑧

𝑘3
) − 𝑎32𝑦𝑧 

2.1 Nomenclature: 

S.No. Parameter Description 

1 x,y,z    Populations of three species  

2 
i

a
 

Natural growth rates of three species 
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4 
12

 
Interaction rate of first and second species 

(positive value) 

5 
21

 
Interaction rate of second and first species 

(negative value) 

6 
32

 
Interaction rate of third (ammensal) and 

second species (negative value) 

7 k1,k2,k3  Carrying capacities of first, second and 

third species populations respectively. 

 

3.Equilibrium Points 

Equating the system of equations (2.1) to zero, and derive the co-existing state is given by 

          

𝐸(𝑥, 𝑦, 𝑧) =

(

 
 

𝑘1(𝑎1𝑎2+𝑎12𝑎2𝑘2)

(𝑎1𝑎2+𝑎12𝑎21𝑘1𝑘2)
,

𝑘2(𝑎1𝑎2−𝑎21𝑎1𝑘1)

(𝑎1𝑎2+𝑎12𝑎21𝑘1𝑘2)
,

𝑘3{(𝑎3𝑎1𝑎2+𝑎12𝑎21𝑘1𝑘2)−𝑘2𝛼32(𝑎1𝑎2+𝑎21𝑎1𝑘1)]

𝑎3(𝑎1𝑎2+𝑎12𝑎21𝑘1𝑘2) )

 
 

              (3.1) 

Co-existing state exist if (i) 𝑎2𝑎2 > 𝑎1𝛼21𝑘1  

  
(ii) (𝑎3𝑎1𝑎2 + 𝑎12𝑎21𝑘1𝑘2) > 𝑘2𝛼32(𝑎1𝑎2 + 𝑎21𝑎1𝑘1) are Satisfied     (3.2) 

  4. Local Stability at Co-existing State 

Theorem1:  The co-existing state is locally asymptotically stable  

Proof: The variational matrix for the system (2.1) is 

𝐽 =

[
 
 
 
 𝑎1 −

2𝑎1𝑥

𝑘1
+ 𝑎12𝑦𝑒−𝜆𝜏 𝑎12𝑥𝑒−𝜆𝜏 0

−𝑎21𝑦𝑒−𝜆𝜏 𝑎2 −
2𝑎2𝑦

𝑘2
+ 𝑎12𝑦𝑒−𝜆𝜏 0

0 −𝑎32𝑧 𝑎3 −
2𝑎3𝑧

𝑘3
− 𝑎32𝑦]

 
 
 
 

       

                                                                                                                   (4.1)

 

Characteristic equation of the (4.1) is given by 
3 2 2

1 2 3 1 2 3( , ) ( ) 0p p p e q q q                             (4.2) 

31 2
1 1 2 3

1 2 3

22 2
( )

a za x a y
P a a a

k k k
       

2

2 3 2 3 1 32 2 321 1
2 1 2 1 3 2 3

1 2 1 3 2 2 1 2

32 32 3 31 22 1 1 1
32 1 32 2

2 1 3 3 1 2

4 2 24 4

2 22 2 2 2

a a yz a a x y a a ya a x y a a xz
P a a a a a a

k k k k k k k k

a a z a a ya a y a a x a a z a a x
a a y a a y

k k k k k k

       

       

 

2

1 2 3 1 2 3 1 2 3 1 2 32 1 2 3
3 1 2 32

2 1 3 1 2 1 2 3

2

1 2 3 1 2 3 1 3 32 1 2 32 1 2 3
1 2 3

2 3 2 1 1 2

2 2 2 4 8

4 4 2 2 4

a a a y a a a x a a a z a a a x y a a a x yz
P a a a y

k k k k k k k k

a a a yz a a a zx a a a y a a a x y a a a x y
a a a

k k k k k k

     

     

 

1 21 12q a x a y   
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2
2

3 21 2 12
2 1 12 2 12 12 3 21 32 12 32 3 21 1 21

3 2

2 2a a xz a a y
q a a x a a y a a y a a xy a a y a a x a a x

k k
        

2
2

1 21 32 12 3 2 1 21 3 2 12 3
3 1 21 3 12 32 2

1 2 1 3 3

2 3

1 3 21 2 3 12 2 32 12 12 3 1 21 3
21 32 12 2 3

3 2 2 3 1

2 2 4 2
2

2 4 2 2 2

a a a x y a a a y a a a xz a a a yz
q a a a x a a a y

k k k k k

a a a xz a a a y a a a y a a yz a a a x
a a x y a a a y

k k k k k

     

      

 

Which can be written as ( , ) ( ) ( )P Q e         

Case (i) For 0   

The characteristic equation obtained from (4.2) by putting 0  given by the following equation  

23 1 2 1 2
12 21

3 1 2 1 2

( ,0) 0
a z a x a y a a x y

a a x y
k k k k k

    
      

             
       

 

23 1 2 1 2
12 21

3 1 2 1 2

0 0
a z a x a y a a x y

or a a x y
k k k k k

  
      

            
       

 

𝜆 = −
𝑎3𝑧

𝑘3
= 0 

𝑎𝑛𝑑 [𝜆2 + 𝜆 (
𝑎1𝑥

𝑘1
+

𝑎2𝑦

𝑘2
) + (

𝑎1𝑎2𝑥𝑦

𝑘1𝑘2
+ 𝑎12𝑎21𝑥𝑦)] = 0                    (4.3)

 

One of the roots is negative i.e., 

 

−
𝑎3𝑧

𝑘3

 
 

From the equation (3.B.3.3) find the remaining two roots. if the two roots have negative real roots if 

the trace of the equation
b

a

 
 
 

is negative and the determinant
c

a

 
 
 

  is positive. 

The trace and determinant from the equation (3.B.3.3) are given as follows 

 Here the trace is =
 1 2 2 1

1 2

0
a xk a ykb

a k k

 
   

Determinant=
 1 2 12 21 1 2

1 2

0
a a a a k k x yc

a k k


 

 

Therefore, the system (2.1) is locally asymptotically stable at co-existing state. 

Therefore, the co-existing state is locally asymptotically stable. 

Case (ii) Let 0  : Suppose there is  a positive 0    such that the equation (4.2) has pair of purely 

imaginary root, let the roots be , 0,i    therefore i  satisfies the equation (4.2)  
3 2 2

1 2 3 1 2 3( ) ( ) ( ) ( ( ) ( ) ) 0ii p i p i p e q i q i q          
 

2 2

1 3 1 3 2

3 2

2 2 1 3

cos cos sin

[ cos sin sin ] 0

p p q q q

i w wp q q q

     

    

     

       

Separating real and imaginary parts, we get  
2 2

3 1 2 1 3( )cos sinq q q p p       
   (4.4) 

2 3

2 3 1 2cos ( )sinq q q p        
   (4.5) 

On adding, the two equations after squaring, we get 

From the above equations we get the following equation (by squaring and add the two results)
 

2 2 2 2 3 2

3 1 2 1 3 2( ) ( ) ( ) ( )q q q p p p           
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6 4 2 2 2 2 2 2 2

1 2 1 2 1 3 2 1 3 3 3( 2 ) ( 2 2 ) 0p p q p p p q q q q p           
 

Let   
3 2

1 2 3( ) 0p p p N pN N     
   

(4.6)

 

 Where   
2 2

1 1 1 1

2 2

2 2 1 2 2 1 3

3 3

3 3 3

2

2

2 2

N p p q

N p p p q q q

N q p

p 

  

   

 



 

( )p o   

             If we assume that 1 2 30, 0, 0N N N    then equation (4.2) has no positive real roots. 

Therefore, the equation (4.2) admits negative real roots. Hence, we can derive the conditions for 

existences of stability at equilibrium point. 

Theorem 4.1  The system (2.1) is locally asymptotically stable at co-existing state for all  , if the 

following conditions hold.  

1 1 2 2 3 3

1 2 3

( ). ( ) 0, ( ) 0 , ( ) 0

( ). 0, 0, 0

i p q p q p q

ii N N N

     

  
 

Proof: Any one of 1 2 3, ,N N N is negative. Then equation (4.2) has a positive   

root 0  

Eliminating cos , from the equations (4.4) & (4.5), we have  
2

1 3 2

3 2

2 3 1

2

3 1 2

2

2 3 1

( )
cos

( )

p p q

p q q

q q q

q q q

 

  


 

 



  




 
 

(Q by using Cramer’s rule in determinants) 
2 4 2 4 2

1 3 3 3 1 1 1 3 3 2 3

2 2 4 2 2 2

3 1 1 3 2

cos
2

p q p q p q q p q w p q

q q q q w q

   


 

    


  
 

4 2
1 0 3 1 1 0 1 3 1 3 2 3 3 3

2 4 2 2 2

0 1 0 0 2 1 3 3 0

( ) ( )1 2
cos

( 2 )
k

q p q p q q p p q p q k

q q q q q

  


   

      
  

   
 

0,1,2,3...............where k   

 

5. HOPF BIFURCATION 

 Theorem 5.1:  The sufficient condition for the system (4.1) admits bifurcation along the co-existing 

state E if 0 
 
and locally asymptotically stable If 00      

 Proof: Hopf bifurcation occurs when the real part of ( )t  become positive when 0   and the steady 

state become unstable moreover, when  passes through the critical value 0 . 

To check this result, differentiating the equation (4.2) With respect to ,  we get  

 

                   

2 2

1 2 1 2 1 2 33 2 (2 ) ( )( ) 0
d d d d d d

p p e q q q q q e
d d d d d d

      
      

     

          
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2 2 2

1 2 1 2 1 2 3 1 2 33 2 (2 ) ( ) ( )
d

p p e q q q q q e q q q e
d

  
        



               

         

2 21
1 2 1 2 1 2 3

2

1 2 3

3 2 (2 ) ( )

( )

p p e q q q q q ed

d q q q e

 



     

   

 



              
 

         

1 2

1 2 1 2

2 2

1 2 3 1 2 3

3 2 (2 )

( ) ( )

p p q qd

d q q q e q q q

   

       





   
        

 

         

1 2

1 2 1 2

3 2 2

1 2 3 1 2 3

3 2 (2 )

( ) ( )

p p q qd

d p p p q q q

   

        


   

          
 

i   

         0

1 2
1 20 1 0 2

3 2 2 2

0 0 2 0 1 0 3 2 0 3 1 0

(2 )3 21

( ( ) ( )

iq qip pd
i

d p i p p q i q q

 


      

     
              

 

0

21 2 3 2
1 2 2 0 3 1 00 1 0 2 0 2 0 1 0 3

3 2 2 2 2 2 2

0 0 2 0 1 0 3 2 0 3 1 0

(2 )( ( )( 3 2 )(( ( )1

( ) ( ) ( ) ( )

iq q q i q qip p p i p pd
i

d p p p q q q

      


      

            
              

 

Real part of 

 

1
d

d







 
 
 

= 
2 3 2 2 2

0 2 0 2 0 1 0 1 0 3 2 0 1 0 3 1 0

3 2 2 2 2 2 2

0 0 2 0 1 0 3 2 0 3 1 0

( 3 )( ) 2 ( ) 2 ( )1

( ) ( ) ( ) ( )

p p p p p q q q q

p p p q q q

       

     

         
 

      
 

                 3 2 2 2 2 2 2

0 2 0 1 0 3 2 0 3 1 0( ) ( ) ( ) ( )p p p q q q            

              =  
5 3 2 2 2 2

0 0 1 2 2 1 2 1 3 1 2 2 0

2 2 2

0 2 0 3 1 0

3 (2 3 2 ) ( 2 2 )1

( ) ( )

p p p q p p p q q q

q q q

  

  

        
 

  
 

        

1 4 2 2 2 2 2

0 0 1 2 1 2 1 3 1 2 2

2 2 2

2 0 3 1 0

3 (2 4 2 ) 2 2
Re

( ) ( )

p p q p p p q q qd

d q q q

 

  


        

        
 

0

1 4 2 2 2 2 2

0 0 1 2 1 2 1 3 1 3 2

2 2 2

2 0 3 1 0

3 (2 4 2 ) 2 2
Re( ) Re

( ) ( )
i

p p q p p p q q qd d

d d q q q
 

 


   





            
               

 

                                              Re( ) 0
d

d




 
 

 
 

By using this condition   N1>0, N2 > 0, N3>0 we have  

0

(Re( )) 0
i

d

d  


 

 
 

 
 

Therefore, the Hopf bifurcation occurs at 0   

 

6. Numerical Simulation 

 We study the Hopf bifurcations for the system (2.1) with the tolerance parameter (τ).  For the system 

of equations, the parameters are identified as shown in the example 1. For different values of τ the 

graphs are shown below. 

Example: 6.1 let us choose the following parameters for examination 

𝑎1 = 1, 𝑎2 = 1, 𝑎3 = 1, 𝛼12 = 0.2, 𝛼21 = 0.5, 𝛼32 = 0.4, 𝑘1 = 50, 𝑘2 = 50, 𝑘3 = 50 , 𝑥 = 3, 𝑦 =
3, 𝑧 = 3.  
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                          Fig. 6.1 (A)              Fig. 6.1 (B) 

          The unbounded periodic solutions for the system (3.B.1.1) when τ = 0.069 

 
                            Fig. 6.1 (C)                   Fig. 6.1 (D) 

             The bounded solutions for the system (2.1) when τ = 0.068 

Example: 6.2 let us choose the following parameters for examination 

𝑎1 = 1, 𝑎2 = 1, 𝑎3 = 1, 𝛼12 = 0.1, 𝛼21 = 0.5, 𝛼32 = 0.4, 𝑘1 = 50, 𝑘2 = 50, 𝑘3 = 50 , 𝑥 = 3, 𝑦 =
1, 𝑧 = 2.  

 
                     Fig. 6.2 (A)    Fig. 6.2 (B) 

          The unbounded periodic solutions for the system (2.1) when τ = 0.065 

 

 
                      Fig. 6.2 (C)    Fig. 6.2 (D) 

            The bounded solutions for the system (2.1) when τ = 0.064 

 

Example : 6.3 Let us choose the following parameters for examination 
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𝑎1 = 1, 𝑎2 = 0.5, 𝑎3 = 0.25, 𝛼12 = 0.1, 𝛼21 = 0.5, 𝛼32 = 0.4, 𝑘1 = 50, 𝑘2 = 50, 𝑘3

= 50, x=5,y=3,z=6. 

 
                     Fig. 6.3 (A)     Fig. 6.3 (B) 

         The unbounded periodic solutions for the system (2.1) when τ = 0.072 

 
                     Fig. 6.3 (C)     Fig. 6.3 (D) 

               The bounded solutions for the system (2.1) when τ = 0.071 

 

Example: 6.4 Let us choose the following parameters for examination  
𝑎1 = 3, 𝑎2 = 2; , 𝑎3 = 3, 𝛼12 = 0.2, 𝛼21 = 0.5, 𝛼32 = 0.4, 𝑘1 = 50, 𝑘2 = 50, 𝑘3 = 50,

𝑥 = 5, 𝑦 = 3, 𝑧 = 6.
 

 

         
             Fig. 6.4 (A)                 Fig. 6.4 (B) 

               The unbounded periodic solutions for the system (2.1) when τ = 0.65 

 
                  Fig. 6.4 (C)                           Fig. 6.4 (D) 

            The bounded solutions for the system (2.1) when τ = 0.6 
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7.Conclusion 

A logistics growth model with three species is considered for investigation. The model consists of first 

(x), second (y) and third (z) species. The delay parameter is incorporated in the interaction of first (x) 

and second (y) species. The system is locally asymptotically stable at co-existing state. Numerical 

simulation is carried out for different values of τ and the dynamics was shown with suitable examples. 

In this model we study the parametric (τ) based Hopf bifurcation.  We take four sets of examples to 

study the bifurcation nature. In each of the examples for different values of the delay parameter ‘τ’ the 

dynamics was shown and observes the following. The Hopf bifurcation exists for three examples 

shown in the following table. 

 

S. No  Example  Hopf bifurcation value  

1 Example 6.1 τ > 0.068 

2 Example 6.2 τ > 0.064 

3 Example 6.3 τ > 0.071 

4 Example 6.4  τ > 0.6 

                               Hence the delay parameter τ stabilizes the system. 
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