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ABSTRACT: 

With the rapid development of e-commerce and social media platforms, recommender systems have 

become indispensable tools for many business organizations. They are used in various applications like 

product suggestions on online e-commerce websites or playlist generators for video and music services. 

It has the ability to predict whether a particular user would prefer an item or not based on the user's 

past preferences and explore what they are interested in. Recommendation systems are divided into 

two types: Collaborative filtering and Content-Based recommendation Systems. Recently, deep learning 

models are used in recommender systems because of their ability to capture the non-trivial relationship 

between user and item. Graph Neural Networks (GNN) are a class of deep learning methods designed 

to perform inference on data described by graphs. NGCF and LightGCN are variants of GNN. These 

frameworks perform user recommendations with deep learning instead of the traditional matrix 

factorization.They measure the similarity between the user and item, therefore allowing us to understand 

how likely it is for the user to like the movie. In this paper, we compare two methods Light GCN and 

Neural Graph Collaborative Filtering(NGCF) to capture the collaborative signal between users/items. 

Keywords: Collaborative filtering, Data Sparsity, Graph Neural Networks, High-orderconnectivity, 

Recommendation Systems. 

 

INTRODUCTION 

Rating prediction is an important task which aims at predicting the user's rating for the items which are 

not yet rated by the user. Collaborative filtering is a popular recommendation technique in various 

domains. It predicts the unknown ratings based on the ratings of the similar users and historical data. 

Sparsity due to cold start problem, where the user/item does not appear during the training process of 

generating recommendations, is a severe problem of collaborative filtering. To reduce this sparsity and 

to improve the recommendation accuracy, matrix factorization methods are used. Matrix factorization 

[1] is an efficient model-based collaborative filtering approach applied in the recommendation systems 

to address the sparsity problem. It decomposes the rating matrix (user-movie interaction matrix) into 

two low dimensional rectangular matrices, and a simple dot product is applied to predict the unknown 

ratings. The conventional matrix factorization methods are not considered to be efficient as they do not 

capture the user-item interactions entirely as it uses a simple dot product while predicting the rating. 

Next, various matrix factorization methods [2-7] were proposed to learn the user –iteminteractions by 

incorporating side information such as user content (like demographic, social relations, trust/untrust 

etc.,) and item content (like genre, categories, topics etc.,). Deep learning is an advanced learning 

technique which gained popularity in various domains [8]. Nowadays, lot of research was reported on 

deep learning-based recommendation systems to overcome the problems of traditional 

recommendation algorithms because they capture the hidden, non-linear, and non-trivial interactions 

between the user and item, which helps in a better prediction rate.The two important components of 

any deep learning based collaborative filtering models –1) embedding, represents the user and items as 

vector, and 2) interaction, reconstructs the interactions between the user and items based on 

embeddings [9]. In matrix factorization, the users and items are embedded as vectors and the interaction 

matrix is constructed by the dot product of these vectors. In deep learning-based m
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 [10-13], the user and item embeddings are merged and applied to the non-linearity of the neural 

networks. Graph Neural Networks (GNN) are a special case of deep neural networks where data is 

represented in the form of a bipartite graph. Nowadays, GNN based recommender systems have been 

dominant both in academic and industrial applications. The interaction matrix of the recommender 

systems is represented in the form of a graph. The users and items in the matrix are represented as 

nodes and the observed ratings are represented as links in the graph. In this work, we consider the 

unobserved rating prediction as link prediction on graphs. The main idea of GNN is to find the 

neighbors of the users/items and allow high-quality learning of user and item representations, which 

consequently improves the performance. Even though, existing methods are considered to be effective 

Xiang Wang et al. [9] believed that these methods are alone not sufficient to generate embeddings that 

capture the collaborative signal, which is hidden in the interactions between the users and items.  To 

be more precise, most of the deep learning-based methods generated embedded vectors using 

descriptive features (like UserID, MovieID, and other attributes) and ignore hidden user-item 

interactions (a.k.a. collaborative signal), which are solely used to create the objective function for 

model training [15,16]. This collaborative signal helps to reveal the similarity between the users/items. 

As integration of user-item interactions into embedding vectors is practically impossible due to 

presence of large number of users and items, Xiang Wang et al. [9] proposed the concept of high – 

order connectivity to capture collaborative signal from the user-item interaction graph.To find the high-

order connectivity information from the embedded vectors, a neural network is designed from the 

bipartite interaction graph to propagate the graph embeddings recursively. 

 

The bipartite graph for the user-item matrix is represented in the figure1. 

 

User – Item  matrixBipartite graph                    

 
 

Figure 1: User-Item Bipartite graph 

In this paper, we compare two methods LightGCN [14] and Neural Graph Collaborative 

Filtering(NGCF)[9] to capture the collaborative signal between users/items.The rest of the paper is 

organized as follows: section 2 deals with the previous works done in this domain, section 3 explains 

the two GNN based frameworks NGCF andLightGCN,ExperimentalSetup and Comparisons. 

 

1. RELATED WORKS: 

We review existing work on model-based CF, graph-based CF, and graph neural network-based 

methods, which are most relevant with this work. 

2.1 SimplifyingGraphConvolutionNetworks: 

Historically, the development of machine learning Graph Convolutional Networks and their variants 

became prominent because of their significant methods for learning graph representations.GCNs are 

primarily inspired from recent deep learning approaches, as a result, it may inherit unnecessary 

complexity and redundant computation. Hence, In SGC we reduce this complexity through successively 

removing the nonlinearities and collapsing weight matrices between consecutive layers.  
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We empirically show that the final linear model exhibits comparable or even superior performance to 

GCNs on avariety of tasks while being computationally more efficient and fitting significantly fewer 

parameters. We theoretically analyze the linear model and show that it corresponds to a fixed low-pass 

filter followed by a linear classifier. Notably, our experimental evaluation demonstrates that these 

simplifications do not negatively impact accuracy in many downstream applications. Moreover, the 

resulting model efficiently scales larger datasets and yields g up to two orders of magnitude speed over 

FastGCN. 

 

GCNN FOR WEB SCALE RECOMMENDER SYSTEMS: 

Recent advancements in deep neural networks for graph-structured data have revolutionized the 

performance of recommender systems. However, making them practical and scalable to web scale 

recommendation tasks with billions of items and trillions of users always remains a challenge.  Here we 

present a highly scalable GCN framework that we have developed and deployed in production at 

Pinterest. Our framework, a random-walk-based GCN named Pin Sage, operates on a massive graph 

with 3 billion nodes and 18 billion edges - a graph that is 10, 000 times larger than typical applications 

of GCNs. Pin Sage drastically improves the scalability of GCNs by combining efficient random walks 

and graph convolutions to generate embeddings of nodes (i.e., items) that incorporate both graph 

structure as well as node feature information. According to offline metrics and user studies, Pin Sage 

generates higher quality recommendations than other graph-based alternatives. GCNs are more 

prominent as they use both content information as well as graph structure. Hence, We proposed Pin 

Sage, a random-walk highly-scalable graph convolutional network (GCN) algorithm which is capable 

of learning embeddings for nodes in web-scale graphs containing billions of objects. In addition to new 

techniques that ensure scalability, we introduced the use of importance pooling and curriculum training 

that drastically improved embedding performance. We deployed Pin Sage at Pinterest and 

comprehensively evaluated the quality of the learned embeddings on a no. of recommendation tasks, 

with offline metrics and user studies all demonstrating a substantial improvement in recommendation 

performance. Our work demonstrates the impact that graph convolutional methods can have in a 

production recommender system, and we believe that Pin Sage can be further extended in the future to 

tackle other graph representation learning problems at large scale, including knowledge graph reasoning 

and graph clustering. 

 

GRAPH CONVOLUTIONAL MATRIX COMPLETION: 

Graph Convolutional Matrix Completion (GCMC) is a technique for matrix completion in the context 

of graph-structured data. It aims to predict missing entries in a matrix based on the information available 

in a graph. The approach involves constructing a graph where the rows and columns of the matrix are 

represented as nodes, and the observed entries are represented as edges. A graph convolutional network 

(GCN) is then used to learn a low-dimensional representation of the nodes in the graph, which captures 

the underlying structure of the data. The GCN is trained to predict the missing entries in the matrix, 

based on the observed entries and the learned node representations. The loss function used to train the 

model typically involves a combination of reconstruction error and regularization terms. One of the key 

advantages of GCMC is that it can handle missing entries in the graph as well as missing entries in the 

matrix. This makes it particularly useful for applications where data is incomplete or sparse. GCMC has 

been applied in a variety of domains, including recommender systems, drug discovery, and social 

network analysis. Here, we view matrix completion as a link prediction problem on graphs where the 

interaction data in collaborative filtering can be represented by a bipartite graph between user and item 

nodes, with observed ratings/purchases represented by links. Content information can naturally be 

included in this framework in the form of node features. Further predicting ratings, then reduces to 

predicting labeled links in the bipartite user-item graph. The graph convolutional matrix completion 

(GC-MC): a graph-based auto-encoder framework for matrix completion, builds on recent progress in 

deep learning on graphs. The auto-encoder produces latent features of user and item nodes through a 

form of message passing on the bipartite interaction graph. These representations are used to reconstruct 



Juni Khyat                                                                                                              ISSN: 2278-4632                    

(UGC Care Group I Listed Journal)                                   Vol-13, Issue-04, No.06, April : 2023 

Pag | 171            DOI10.36893.JK.2023.V13I04N16.00168-00177               Copyright@2023 Author 

 

the rating links using a bilinear decoder. The advantage of formulating matrix completion as a link 

prediction task on a bipartite graph becomes especially apparent when recommender graphs are 

accompanied with structured external information such as social networks. Combining such external 

information with interaction data can alleviate performance bottlenecks related to the cold start problem.  

 

2. METHODOLOGY: 

3.1 NGCF: 

Neural Graph Collaborative Filtering (NGCF) is a recommendation algorithm that utilizes graph neural 

networks to performcollaborative filtering. In NGCF, the user-item interaction data is represented as a 

bipartite graph, where the nodes represent the users and items, and the edges represent the interactions 

between them. The graph neural network is then used to learn the embeddings of the users and items by 

propagating information along the graph. These embeddings are used to predict the user-item 

interactions and provide recommendations to the users. NGCF has shown promising results in terms of 

recommendation accuracy and scalability, and it has been applied in various real-world applications. 

 

ARCHITECTURE OF NGCF: 

The architecture of NGCF consists of 3 components: Embedding Layer - It initializes the user and item 

vectors, Multiple Embedding Propagation Layer – Embeddings are refined by introducing high order 

connectivity relations and Prediction Layer – It predicts the final score given by a user to an item by 

combining the redefined embeddings from different propagation layers. 

 

 
Figure a : Architecture of NGCF[15] 

3.1.1EMBEDDING LAYER: 

The embedding layer initializes user embeddings and item embeddings, where each user or item is 

represented by an embedding vector. Thus, an embedding look-up table can be built by combining all 

user anditem embeddings. These embeddings are then taken to the graph, where message passing happens 

in the second component of the framework.The 

 1-D matrix of embeddings formulated as: 

E= [eu1,… ,euN ,ei1,….,eiM] (1) 

  

MULTIPLE EMBEDDING PROPAGATION LAYER: 

In this layer webuild message-passing architecture of GNN to capturecollaborative filtering signal along 

the graph structure and refine the embeddings of users and items. We first illustrate the design of one-

layer propagation and generalize it to multiple successive layers. Here there are two types of propagation: 

1) First-order Propagation 

2) High-order Propagation 

1)First-order Propagation: 

The user’s preference is calculatedbased on user - item interactions hence, the users that consume an 

item can be treated as the item’s features and used to measure the collaborative similarity of two items. 

We build upon this basis to perform embedding propagation between the connected users and items, by 

performing two major operations: Message construction and Message aggregation. 

• Message Construction: 
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The embedding propagation component consists of propagationlayers, where messages are passed from 

node to node on the graph. These messages are used to update a node with information from its 

neighbors.For each connected user-item pair (u, i), the message from i to u is defined as: 

 

 

 

(2) 

 

Where, Nᵤ, Nᵢ are the first hop neighborsof u and i, W₁, W₂ are trainable weight matrices, and eᵤ, eᵢ are 

the embeddings of the item and user. 

To make training easier, the normalizing constant in message construction, can actually be modeled as an 

adjacency matrix. This makes it more efficient to do batch processing throughout the propagation layers. 

• Message aggregation: 

The messages are aggregated to update the embeddings of users and items. The representation of user u is 

updated as: 

 

e u(1) = LeakyReLU(m u←u + ∑ 

mu←i) 

i€Nu 

 

 

 

2)High-order Propagation: 

From previous representations created by first-order connectivity, we can stack more embedding 

propagation layers to explore the high-order connectivity information to encode the collaborative signal 

to estimate the relevance score between a user and item.By stacking the layers, a user and an item is can 

receive  

tneighbours.  

 

 

 

3.1.3 MODEL PREDICTION: 

Representations obtained from different layers are concatenated to form the final embedding for user or 

item. 

 
 

  

3.1.4  OUTPUT LAYER: 

Finally, Users are recommended items with high preference by using the below formula: 

      

 

3.2   LIGHTGCN: 

LightGCN is a graph convolutional network (GCN) model designed for collaborative filtering tasks on 

sparse and large-scale recommendation graphs.The basic idea of LightGCN is to learn user item 

embeddings by linearly propagating themon user item interaction graph and uses the weighted sum of 

embeddings learned from all layer’s final embedding. To Achieve this, it performs graph convolution 

iteratively, i.e., aggregating the features of neighbours as the new representation of a target node. 

 

Architecture of LightGCN: 

eu
(l)= LeakyReLU (m u←u

(l)+ ∑ m 

u←i
(l)) 

 

  

ŷNGCF (u, i) = eu
*T . ei

*     
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Figure b : Architecture of LightGCN[16] 

In LightGCN architecture, only the normalized sum of neighbour embeddings is performed towards 

next layer;  the other operations like self-connection, feature  - transformation, and nonlinear activation 

are all removed,  

which simplifies GCNs. In Layer Combination, we sum over the embeddings at each layer to obtain 

the final representations. It has twolayers: 

1)Intralayer neighbourhood aggregation 

2)Interlayer combination and model prediction 

 

3.2.1 INTRALAYER NEIGHBOURHOOD AGGREGATION: 

In LightGCN, we use simple weighted sum aggregator method and abandon the use of feature 

transformation and nonlinear activation. The graph convolution operation or  propagation rule [39]) in 

LightGCN is defined as: 

 

 

 

 

 

Where, eᵤ⁽ᵏ⁾ and eᵢ⁽ᵏ⁾ - user and item node embeddings at the k-th layer.|Nᵤ| and |Nᵢ|- the user and item 

nodes’ number of neighbors. 

 

3.2.2  INTERLAYER COMBINATION AND MODEL PREDICTION: 

• LAYER COMBINATION:In LightGCN, the only trainable model parameters are the embeddings at 

the 0-th layer, i.e., eu
(0)  forall users and ei

(0) for all items. Whenthey are given, the embeddings at higher 

layers can be computed via LGC defined in above Equation.After K layers LGC, we further combine 

the embeddings obtained at each layer and the 0th layer embeddings to form the final representation of a 

user (an item) and item are combined using below equation: 

 

 

 

 

where, αk -is hyperparameter and in our experiments, we find that setting αk uniformly as 1/(K+1) leads 

to good performance in general. There are 3 main reasons for performing layer combination. 

With the increasing of the no. of layers, the embeddings will be smoothed .  

  The embeddings at different layers capture different semantics. E.g., the first layer smoothens the users 

and items thathave interactions, the second layer smooths usersthat overlap on interacted items, and 

higher-layerscapture higher-order. proximity. Thus, combining them will give effective representation. 
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 Combining embeddings at different layers with weighted sum captures the effect of graph convolution 

with self-connections, an important trick in GCNs. 

• MODEL PREDICTION: 

The model prediction is defined as the inner product of final user and item final representations 

embeddings: 

 

ŷui  = eu
T. ei  

 

RESULTS AND DISCUSSIONS: 

a) DATASET DESCRIPTION:The dataset we used to run experiments is Movielens 100K dataset. It 

consists of 1,00,000 ratings given by 943 users for 1682 movies. The detailed analysis of MovieLens 

dataset is given in the following table. 

b) EXPERIMENTAL SETUP: 

The Software Requirements are  Operating System – Windows 11 (64 bit), Language –Python 3.7 and 

Hardware Requirements are RAM – 8GB, Graphic card – NVIDIA GeForce GTX 1650  and Processor 

– AMD Ryzen 5 4600H. 

c) EVALUATION METRICS: 

We compare the performance of LightGCN and NGCF with the help of evaluation metrics like Precision 

and Recall. This reveals the effectiveness of LightGCN 

• Precision: The proportion of true positive predictions over the total number of positive predictions. 
 

• Recall: the proportion of true positive predictions 

over the total number of actual positive cases. 

 

Recall@K=TruePositive/TruePositiv

e+ 

FalseNegative 

(11 

 

• F1-score: a weighted average of precision and recall that balances the trade-off between them. 

COMPARISONS 

We conducteda detailed comparison of LightGCN with NGCF using evaluation metrics like Precision, 

Recall and F-Score.For each epoch we calculated the Precision, Recall and F-Score for both NGCF and 

LightGCN in the following table. 

Table 1: Description of Movielens Dataset 

Datasets #Users #Items #Ratings 
Rating 

Levels 

# 

Ratings 

> 3 

Rating Distribution 

Rating 3 Rating 4 Rating 5 

Movie 

lens 100K  

943 1682 100000 1,2,3,4,5 82520 27145 34174 21201 

Precision@K=TruePositive/TruePosit

ive+ 

FalsePositive 

 

 

F1-score = 2*Precision*Recall / 

Precision + Recall 

 

12) 
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Table 2: Comparison of NGCF and LightGCN 

Latent factors=64, # layer = 3, Batch size=1024, Decay = 0.0001, LR = 0.005, Dataset=Movie Lens 

100K 

NGCF 

# Epochs Precision@20 Recall@20 F-score@20 
Computational Time 

(sec/iteration) 

10 0.2078 0.3025 0.2464 3.61 

20 0.212 0.3175 0.2542 3.51 

30 0.2126 0.3162 0.2543 3.55 

40 0.2144 0.3143 0.2549 3.51 

 50 0.2123 0.3134 0.2531 3.63 

 10 0.2063 0.3121 0.2484 2.93 

LightGCN 

20 0.2211 0.3339 0.2660 2.55 

30 0.2292 0.3411 0.2742 2.50 

40 0.2343 0.3492 0.2804 2.68 

50 0.2406 0.3587 0.2880 2.70 

 

Latent factors=128, # layer= 3, Batch size=1024, Decay = 0.0001, LR = 0.005, Dataset 

=MovieLens100K 

 

 
# Epochs Precision@20 Recall@20 F-score@20 

Computational Time 

(sec/iteration) 

NGCF 

10 0.1975 0.2956 0.2368 5.46 

20 0.1997 0.2956 0.2384 5.59 

30 0.2025 0.3024 0.2426 5.12 

40 0.2003 0.2997 0.2401 5.18 

50 0.2071 0.2996 0.2449 5.20 

LightGCN 

10 0.2144 0.3242 0.2581 3.76 

20 0.228 0.3391 0.2727 3.13 

30 0.238 0.3557 0.2852 3.07 

40 0.2409 0.2997 0.2671 3.14 

50 0.2397 0.3564 0.2866 3.15 

 

Latent factors=256, # layer=3, Batch size=1024, Decay = 0.0001, LR = 0.005, Dataset=Movie Lens 

100K 

 

 
# Epochs Precision@20 Recall@20 F-score@20 

Computational Time 

(sec/iteration) 

NGCF 

10 0.189 0.2749 0.2240 11.16 

20 0.1904 0.2798 0.2266 10.90 

30 0.1913 0.2813 0.2277 10.90 

40 0.1918 0.2844 0.2291 10.89 

50 0.1677 0.2583 0.2034 10.88 
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  CONCLUSION: 

In this work, we described the complexity in design of NGCF for collaborative filtering.We proposed 

an effective framework LightGCN which consists of two essential components - light graph 

convolution and layer combination. In light graph convolution, we discard feature transformation and 

nonlinear activation - two standard operations in GNNs but inevitably increase the training difficulty. 

In layer combination, we construct a node’s final embedding as the weighted sum of its embeddings 

on all layers. This  improves the performance of  LightGCN . We conducted experiments to 

demonstrate the strengths of LightGCN in being simple, easier to be trained, better generalization 

ability, and more effective.We believe the insights of LightGCN are inspirational to future 

developments of recommender models. 
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