
Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-13, Issue-04, No.06, April : 2023

Pag | 168 DOI10.36893.JK.2023.V13I04N16.00168-00177 Copyright@2023 Author

HYPERPARAMETER TUNING OF GRAPH CONVOLUTION NETWORKS BASED

COLLABORATIVE RECOMMENDERSYSTEMS - A COMPARATIVE STUDY

V. Lakshmi Chetana 1, 1AssistantProfessor,DVR&Dr.HSMIC Collegeof Technology,India

D. Prasad22AssociateProfessor,DVR&Dr.HSMIC Collegeof Technology,IndiSa

,Sk.Shareena Bhanu3 DepartmentofComputerScienceandEngineering,

DVR&Dr.S MIC Collegeof Technology

,N.Geetha Sree Priya4 DepartmentofComputerScienceandEngineering,

VR&Dr.HS MIC Collegeof Technology,India

,B.BajiAvula Raju 5 DepartmentofComputerScienceandEngineering,

DVR&Dr.HS MIC Collegeof Technology,India

ABSTRACT:

With the rapid development of e-commerce and social media platforms, recommender systems have

become indispensable tools for many business organizations. They are used in various applications like

product suggestions on online e-commerce websites or playlist generators for video and music services.

It has the ability to predict whether a particular user would prefer an item or not based on the user's

past preferences and explore what they are interested in. Recommendation systems are divided into

two types: Collaborative filtering and Content-Based recommendation Systems. Recently, deep learning

models are used in recommender systems because of their ability to capture the non-trivial relationship

between user and item. Graph Neural Networks (GNN) are a class of deep learning methods designed

to perform inference on data described by graphs. NGCF and LightGCN are variants of GNN. These

frameworks perform user recommendations with deep learning instead of the traditional matrix

factorization.They measure the similarity between the user and item, therefore allowing us to understand

how likely it is for the user to like the movie. In this paper, we compare two methods Light GCN and

Neural Graph Collaborative Filtering(NGCF) to capture the collaborative signal between users/items.

Keywords: Collaborative filtering, Data Sparsity, Graph Neural Networks, High-orderconnectivity,

Recommendation Systems.

INTRODUCTION

Rating prediction is an important task which aims at predicting the user's rating for the items which are

not yet rated by the user. Collaborative filtering is a popular recommendation technique in various

domains. It predicts the unknown ratings based on the ratings of the similar users and historical data.

Sparsity due to cold start problem, where the user/item does not appear during the training process of

generating recommendations, is a severe problem of collaborative filtering. To reduce this sparsity and

to improve the recommendation accuracy, matrix factorization methods are used. Matrix factorization

[1] is an efficient model-based collaborative filtering approach applied in the recommendation systems

to address the sparsity problem. It decomposes the rating matrix (user-movie interaction matrix) into

two low dimensional rectangular matrices, and a simple dot product is applied to predict the unknown

ratings. The conventional matrix factorization methods are not considered to be efficient as they do not

capture the user-item interactions entirely as it uses a simple dot product while predicting the rating.

Next, various matrix factorization methods [2-7] were proposed to learn the user –iteminteractions by

incorporating side information such as user content (like demographic, social relations, trust/untrust

etc.,) and item content (like genre, categories, topics etc.,). Deep learning is an advanced learning

technique which gained popularity in various domains [8]. Nowadays, lot of research was reported on

deep learning-based recommendation systems to overcome the problems of traditional

recommendation algorithms because they capture the hidden, non-linear, and non-trivial interactions

between the user and item, which helps in a better prediction rate.The two important components of

any deep learning based collaborative filtering models –1) embedding, represents the user and items as

vector, and 2) interaction, reconstructs the interactions between the user and items based on

embeddings [9]. In matrix factorization, the users and items are embedded as vectors and the interaction

matrix is constructed by the dot product of these vectors. In deep learning-based m

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-13, Issue-04, No.06, April : 2023

Pag | 169 DOI10.36893.JK.2023.V13I04N16.00168-00177 Copyright@2023 Author

 [10-13], the user and item embeddings are merged and applied to the non-linearity of the neural

networks. Graph Neural Networks (GNN) are a special case of deep neural networks where data is

represented in the form of a bipartite graph. Nowadays, GNN based recommender systems have been

dominant both in academic and industrial applications. The interaction matrix of the recommender

systems is represented in the form of a graph. The users and items in the matrix are represented as

nodes and the observed ratings are represented as links in the graph. In this work, we consider the

unobserved rating prediction as link prediction on graphs. The main idea of GNN is to find the

neighbors of the users/items and allow high-quality learning of user and item representations, which

consequently improves the performance. Even though, existing methods are considered to be effective

Xiang Wang et al. [9] believed that these methods are alone not sufficient to generate embeddings that

capture the collaborative signal, which is hidden in the interactions between the users and items. To

be more precise, most of the deep learning-based methods generated embedded vectors using

descriptive features (like UserID, MovieID, and other attributes) and ignore hidden user-item

interactions (a.k.a. collaborative signal), which are solely used to create the objective function for

model training [15,16]. This collaborative signal helps to reveal the similarity between the users/items.

As integration of user-item interactions into embedding vectors is practically impossible due to

presence of large number of users and items, Xiang Wang et al. [9] proposed the concept of high –

order connectivity to capture collaborative signal from the user-item interaction graph.To find the high-

order connectivity information from the embedded vectors, a neural network is designed from the

bipartite interaction graph to propagate the graph embeddings recursively.

The bipartite graph for the user-item matrix is represented in the figure1.

User – Item matrixBipartite graph

Figure 1: User-Item Bipartite graph

In this paper, we compare two methods LightGCN [14] and Neural Graph Collaborative

Filtering(NGCF)[9] to capture the collaborative signal between users/items.The rest of the paper is

organized as follows: section 2 deals with the previous works done in this domain, section 3 explains

the two GNN based frameworks NGCF andLightGCN,ExperimentalSetup and Comparisons.

1. RELATED WORKS:

We review existing work on model-based CF, graph-based CF, and graph neural network-based

methods, which are most relevant with this work.

2.1 SimplifyingGraphConvolutionNetworks:

Historically, the development of machine learning Graph Convolutional Networks and their variants

became prominent because of their significant methods for learning graph representations.GCNs are

primarily inspired from recent deep learning approaches, as a result, it may inherit unnecessary

complexity and redundant computation. Hence, In SGC we reduce this complexity through successively

removing the nonlinearities and collapsing weight matrices between consecutive layers.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-13, Issue-04, No.06, April : 2023

Pag | 170 DOI10.36893.JK.2023.V13I04N16.00168-00177 Copyright@2023 Author

We empirically show that the final linear model exhibits comparable or even superior performance to

GCNs on avariety of tasks while being computationally more efficient and fitting significantly fewer

parameters. We theoretically analyze the linear model and show that it corresponds to a fixed low-pass

filter followed by a linear classifier. Notably, our experimental evaluation demonstrates that these

simplifications do not negatively impact accuracy in many downstream applications. Moreover, the

resulting model efficiently scales larger datasets and yields g up to two orders of magnitude speed over

FastGCN.

GCNN FOR WEB SCALE RECOMMENDER SYSTEMS:

Recent advancements in deep neural networks for graph-structured data have revolutionized the

performance of recommender systems. However, making them practical and scalable to web scale

recommendation tasks with billions of items and trillions of users always remains a challenge. Here we

present a highly scalable GCN framework that we have developed and deployed in production at

Pinterest. Our framework, a random-walk-based GCN named Pin Sage, operates on a massive graph

with 3 billion nodes and 18 billion edges - a graph that is 10, 000 times larger than typical applications

of GCNs. Pin Sage drastically improves the scalability of GCNs by combining efficient random walks

and graph convolutions to generate embeddings of nodes (i.e., items) that incorporate both graph

structure as well as node feature information. According to offline metrics and user studies, Pin Sage

generates higher quality recommendations than other graph-based alternatives. GCNs are more

prominent as they use both content information as well as graph structure. Hence, We proposed Pin

Sage, a random-walk highly-scalable graph convolutional network (GCN) algorithm which is capable

of learning embeddings for nodes in web-scale graphs containing billions of objects. In addition to new

techniques that ensure scalability, we introduced the use of importance pooling and curriculum training

that drastically improved embedding performance. We deployed Pin Sage at Pinterest and

comprehensively evaluated the quality of the learned embeddings on a no. of recommendation tasks,

with offline metrics and user studies all demonstrating a substantial improvement in recommendation

performance. Our work demonstrates the impact that graph convolutional methods can have in a

production recommender system, and we believe that Pin Sage can be further extended in the future to

tackle other graph representation learning problems at large scale, including knowledge graph reasoning

and graph clustering.

GRAPH CONVOLUTIONAL MATRIX COMPLETION:

Graph Convolutional Matrix Completion (GCMC) is a technique for matrix completion in the context

of graph-structured data. It aims to predict missing entries in a matrix based on the information available

in a graph. The approach involves constructing a graph where the rows and columns of the matrix are

represented as nodes, and the observed entries are represented as edges. A graph convolutional network

(GCN) is then used to learn a low-dimensional representation of the nodes in the graph, which captures

the underlying structure of the data. The GCN is trained to predict the missing entries in the matrix,

based on the observed entries and the learned node representations. The loss function used to train the

model typically involves a combination of reconstruction error and regularization terms. One of the key

advantages of GCMC is that it can handle missing entries in the graph as well as missing entries in the

matrix. This makes it particularly useful for applications where data is incomplete or sparse. GCMC has

been applied in a variety of domains, including recommender systems, drug discovery, and social

network analysis. Here, we view matrix completion as a link prediction problem on graphs where the

interaction data in collaborative filtering can be represented by a bipartite graph between user and item

nodes, with observed ratings/purchases represented by links. Content information can naturally be

included in this framework in the form of node features. Further predicting ratings, then reduces to

predicting labeled links in the bipartite user-item graph. The graph convolutional matrix completion

(GC-MC): a graph-based auto-encoder framework for matrix completion, builds on recent progress in

deep learning on graphs. The auto-encoder produces latent features of user and item nodes through a

form of message passing on the bipartite interaction graph. These representations are used to reconstruct

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-13, Issue-04, No.06, April : 2023

Pag | 171 DOI10.36893.JK.2023.V13I04N16.00168-00177 Copyright@2023 Author

the rating links using a bilinear decoder. The advantage of formulating matrix completion as a link

prediction task on a bipartite graph becomes especially apparent when recommender graphs are

accompanied with structured external information such as social networks. Combining such external

information with interaction data can alleviate performance bottlenecks related to the cold start problem.

2. METHODOLOGY:

3.1 NGCF:

Neural Graph Collaborative Filtering (NGCF) is a recommendation algorithm that utilizes graph neural

networks to performcollaborative filtering. In NGCF, the user-item interaction data is represented as a

bipartite graph, where the nodes represent the users and items, and the edges represent the interactions

between them. The graph neural network is then used to learn the embeddings of the users and items by

propagating information along the graph. These embeddings are used to predict the user-item

interactions and provide recommendations to the users. NGCF has shown promising results in terms of

recommendation accuracy and scalability, and it has been applied in various real-world applications.

ARCHITECTURE OF NGCF:

The architecture of NGCF consists of 3 components: Embedding Layer - It initializes the user and item

vectors, Multiple Embedding Propagation Layer – Embeddings are refined by introducing high order

connectivity relations and Prediction Layer – It predicts the final score given by a user to an item by

combining the redefined embeddings from different propagation layers.

Figure a : Architecture of NGCF[15]

3.1.1EMBEDDING LAYER:

The embedding layer initializes user embeddings and item embeddings, where each user or item is

represented by an embedding vector. Thus, an embedding look-up table can be built by combining all

user anditem embeddings. These embeddings are then taken to the graph, where message passing happens

in the second component of the framework.The

 1-D matrix of embeddings formulated as:

E= [eu1,… ,euN ,ei1,….,eiM] (1)

MULTIPLE EMBEDDING PROPAGATION LAYER:

In this layer webuild message-passing architecture of GNN to capturecollaborative filtering signal along

the graph structure and refine the embeddings of users and items. We first illustrate the design of one-

layer propagation and generalize it to multiple successive layers. Here there are two types of propagation:

1) First-order Propagation

2) High-order Propagation

1)First-order Propagation:

The user’s preference is calculatedbased on user - item interactions hence, the users that consume an

item can be treated as the item’s features and used to measure the collaborative similarity of two items.

We build upon this basis to perform embedding propagation between the connected users and items, by

performing two major operations: Message construction and Message aggregation.

• Message Construction:

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-13, Issue-04, No.06, April : 2023

Pag | 172 DOI10.36893.JK.2023.V13I04N16.00168-00177 Copyright@2023 Author

The embedding propagation component consists of propagationlayers, where messages are passed from

node to node on the graph. These messages are used to update a node with information from its

neighbors.For each connected user-item pair (u, i), the message from i to u is defined as:

(2)

Where, Nᵤ, Nᵢ are the first hop neighborsof u and i, W₁, W₂ are trainable weight matrices, and eᵤ, eᵢ are

the embeddings of the item and user.

To make training easier, the normalizing constant in message construction, can actually be modeled as an

adjacency matrix. This makes it more efficient to do batch processing throughout the propagation layers.

• Message aggregation:

The messages are aggregated to update the embeddings of users and items. The representation of user u is

updated as:

e u(1) = LeakyReLU(m u←u + ∑

mu←i)

i€Nu

2)High-order Propagation:

From previous representations created by first-order connectivity, we can stack more embedding

propagation layers to explore the high-order connectivity information to encode the collaborative signal

to estimate the relevance score between a user and item.By stacking the layers, a user and an item is can

receive

tneighbours.

3.1.3 MODEL PREDICTION:

Representations obtained from different layers are concatenated to form the final embedding for user or

item.

3.1.4 OUTPUT LAYER:

Finally, Users are recommended items with high preference by using the below formula:

3.2 LIGHTGCN:

LightGCN is a graph convolutional network (GCN) model designed for collaborative filtering tasks on

sparse and large-scale recommendation graphs.The basic idea of LightGCN is to learn user item

embeddings by linearly propagating themon user item interaction graph and uses the weighted sum of

embeddings learned from all layer’s final embedding. To Achieve this, it performs graph convolution

iteratively, i.e., aggregating the features of neighbours as the new representation of a target node.

Architecture of LightGCN:

eu
(l)= LeakyReLU (m u←u

(l)+ ∑ m

u←i
(l))

ŷNGCF (u, i) = eu
*T . ei

*

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-13, Issue-04, No.06, April : 2023

Pag | 173 DOI10.36893.JK.2023.V13I04N16.00168-00177 Copyright@2023 Author

Figure b : Architecture of LightGCN[16]

In LightGCN architecture, only the normalized sum of neighbour embeddings is performed towards

next layer; the other operations like self-connection, feature - transformation, and nonlinear activation

are all removed,

which simplifies GCNs. In Layer Combination, we sum over the embeddings at each layer to obtain

the final representations. It has twolayers:

1)Intralayer neighbourhood aggregation

2)Interlayer combination and model prediction

3.2.1 INTRALAYER NEIGHBOURHOOD AGGREGATION:

In LightGCN, we use simple weighted sum aggregator method and abandon the use of feature

transformation and nonlinear activation. The graph convolution operation or propagation rule [39]) in

LightGCN is defined as:

Where, eᵤ⁽ᵏ⁾ and eᵢ⁽ᵏ⁾ - user and item node embeddings at the k-th layer.|Nᵤ| and |Nᵢ|- the user and item

nodes’ number of neighbors.

3.2.2 INTERLAYER COMBINATION AND MODEL PREDICTION:

• LAYER COMBINATION:In LightGCN, the only trainable model parameters are the embeddings at

the 0-th layer, i.e., eu
(0) forall users and ei

(0) for all items. Whenthey are given, the embeddings at higher

layers can be computed via LGC defined in above Equation.After K layers LGC, we further combine

the embeddings obtained at each layer and the 0th layer embeddings to form the final representation of a

user (an item) and item are combined using below equation:

where, αk -is hyperparameter and in our experiments, we find that setting αk uniformly as 1/(K+1) leads

to good performance in general. There are 3 main reasons for performing layer combination.

With the increasing of the no. of layers, the embeddings will be smoothed .

 The embeddings at different layers capture different semantics. E.g., the first layer smoothens the users

and items thathave interactions, the second layer smooths usersthat overlap on interacted items, and

higher-layerscapture higher-order. proximity. Thus, combining them will give effective representation.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-13, Issue-04, No.06, April : 2023

Pag | 174 DOI10.36893.JK.2023.V13I04N16.00168-00177 Copyright@2023 Author

 Combining embeddings at different layers with weighted sum captures the effect of graph convolution

with self-connections, an important trick in GCNs.

• MODEL PREDICTION:

The model prediction is defined as the inner product of final user and item final representations

embeddings:

ŷui = eu
T. ei

RESULTS AND DISCUSSIONS:

a) DATASET DESCRIPTION:The dataset we used to run experiments is Movielens 100K dataset. It

consists of 1,00,000 ratings given by 943 users for 1682 movies. The detailed analysis of MovieLens

dataset is given in the following table.

b) EXPERIMENTAL SETUP:

The Software Requirements are Operating System – Windows 11 (64 bit), Language –Python 3.7 and

Hardware Requirements are RAM – 8GB, Graphic card – NVIDIA GeForce GTX 1650 and Processor

– AMD Ryzen 5 4600H.

c) EVALUATION METRICS:

We compare the performance of LightGCN and NGCF with the help of evaluation metrics like Precision

and Recall. This reveals the effectiveness of LightGCN

• Precision: The proportion of true positive predictions over the total number of positive predictions.

• Recall: the proportion of true positive predictions

over the total number of actual positive cases.

Recall@K=TruePositive/TruePositiv

e+

FalseNegative

(11

• F1-score: a weighted average of precision and recall that balances the trade-off between them.

COMPARISONS

We conducteda detailed comparison of LightGCN with NGCF using evaluation metrics like Precision,

Recall and F-Score.For each epoch we calculated the Precision, Recall and F-Score for both NGCF and

LightGCN in the following table.

Table 1: Description of Movielens Dataset

Datasets #Users #Items #Ratings
Rating

Levels

Ratings

> 3

Rating Distribution

Rating 3 Rating 4 Rating 5

Movie

lens 100K

943 1682 100000 1,2,3,4,5 82520 27145 34174 21201

Precision@K=TruePositive/TruePosit

ive+

FalsePositive

F1-score = 2*Precision*Recall /

Precision + Recall

12)

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-13, Issue-04, No.06, April : 2023

Pag | 175 DOI10.36893.JK.2023.V13I04N16.00168-00177 Copyright@2023 Author

Table 2: Comparison of NGCF and LightGCN

Latent factors=64, # layer = 3, Batch size=1024, Decay = 0.0001, LR = 0.005, Dataset=Movie Lens

100K

NGCF

Epochs Precision@20 Recall@20 F-score@20
Computational Time

(sec/iteration)

10 0.2078 0.3025 0.2464 3.61

20 0.212 0.3175 0.2542 3.51

30 0.2126 0.3162 0.2543 3.55

40 0.2144 0.3143 0.2549 3.51

 50 0.2123 0.3134 0.2531 3.63

 10 0.2063 0.3121 0.2484 2.93

LightGCN

20 0.2211 0.3339 0.2660 2.55

30 0.2292 0.3411 0.2742 2.50

40 0.2343 0.3492 0.2804 2.68

50 0.2406 0.3587 0.2880 2.70

Latent factors=128, # layer= 3, Batch size=1024, Decay = 0.0001, LR = 0.005, Dataset

=MovieLens100K

Epochs Precision@20 Recall@20 F-score@20

Computational Time

(sec/iteration)

NGCF

10 0.1975 0.2956 0.2368 5.46

20 0.1997 0.2956 0.2384 5.59

30 0.2025 0.3024 0.2426 5.12

40 0.2003 0.2997 0.2401 5.18

50 0.2071 0.2996 0.2449 5.20

LightGCN

10 0.2144 0.3242 0.2581 3.76

20 0.228 0.3391 0.2727 3.13

30 0.238 0.3557 0.2852 3.07

40 0.2409 0.2997 0.2671 3.14

50 0.2397 0.3564 0.2866 3.15

Latent factors=256, # layer=3, Batch size=1024, Decay = 0.0001, LR = 0.005, Dataset=Movie Lens

100K

Epochs Precision@20 Recall@20 F-score@20

Computational Time

(sec/iteration)

NGCF

10 0.189 0.2749 0.2240 11.16

20 0.1904 0.2798 0.2266 10.90

30 0.1913 0.2813 0.2277 10.90

40 0.1918 0.2844 0.2291 10.89

50 0.1677 0.2583 0.2034 10.88

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-13, Issue-04, No.06, April : 2023

Pag | 176 DOI10.36893.JK.2023.V13I04N16.00168-00177 Copyright@2023 Author

 CONCLUSION:

In this work, we described the complexity in design of NGCF for collaborative filtering.We proposed

an effective framework LightGCN which consists of two essential components - light graph

convolution and layer combination. In light graph convolution, we discard feature transformation and

nonlinear activation - two standard operations in GNNs but inevitably increase the training difficulty.

In layer combination, we construct a node’s final embedding as the weighted sum of its embeddings

on all layers. This improves the performance of LightGCN . We conducted experiments to

demonstrate the strengths of LightGCN in being simple, easier to be trained, better generalization

ability, and more effective.We believe the insights of LightGCN are inspirational to future

developments of recommender models.

REFERENCES

[1] Y. Koran and R. B. and C. Volinsky, “Matrix Factorization Techniques for Recommender

Systems,” IEEE Comput. Soc., no. August, pp. 42–49, 2009.

[2] R. Ravanifard, · Wray Buntine, and · Abdolreza Mirzaei, “Recommending content using side

information,” Appl. Intell., vol. 51, pp. 3353–3374, 2021.

[3] Barjasteh, I. "Matrix completion with side information for effective recommendation"

[Michigan State University]. In ProQuest Dissertations and Theses, 2016.

https://search.proquest.com/docview/1864680320?accountid=14169

[4] Mei, J., de Castro, Y., Goude, Y., Azaïs, J. M., &Hébrail, G, "Nonnegative Matrix Factorization

with Side Information for Time Series Recovery and Prediction," IEEE Transactions on Knowledge

and Data Engineering, 31(3),2019 https://doi.org/10.1109/TKDE.2018.2839678

[5] Symeonidis, P., &Malakoudis, D, "Multi-modal matrix factorization with side information for

recommending massive open online courses,"Expert Systems with Applications, 118,2019. (“Recent

Developments in Recommender Systems | SpringerLink”)

https://doi.org/10.1016/j.eswa.2018.09.053

[6] Zhao, H., Yao, Q., Song, Y., Kwok, J. T., & Lee, D. L," Side Information Fusion for

Recommender Systems over Heterogeneous Information Network,"ACM Transactions on

Knowledge Discovery from Data, 15(4), 2021. https://doi.org/10.1145/3441446

[7] Babkin, A. "Incorporating side information into Robust Matrix Factorization with Bayesian

[8] Quantile Regression," Statistics and Probability Letters, 165. 2020.

https://doi.org/10.1016/j.spl.2020.108847

[9] Behera, G., & Nain, N, "Handling data sparsity via item metadata embedding into deep

collaboative recommender system," Journal of King Saud University - Computer and Information

Sciences, 2022. https://doi.org/10.1016/j.jksuci.2021.12.021

[10] X. Wang, X. He, M. Wang, F. Feng, and T. S. Chua, “Neural graph collaborative filtering,”

SIGIR 2019 - Proc. 42nd Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., pp. 165–174, 2019.

[11] Huang, T., Zhang, D. and Bi, L., “Neural embedding collaborative filtering for recommender

systems”, Neural Computing and Applications, vol.32, pp.17043-17057, 2020.

[12] Sun, X., Zhang, H., Wang, M., Yu, M., Yin, M. and Zhang, B., “Deep Plot-Aware Generalized

Matrix Factorization for Collaborative Filtering”, Neural Processing Letters, vol.52, no.3, pp.1983-

1995, 2020.

[13] [13] M. Fu, H. Qu, Z. Yi, L. Lu, and Y. Liu, "A novel deep learning-based collaborative filtering

model for a recommendation system," IEEE transactions on cybernetics, vol. 49, no. 3, pp. 1084-

1096, 2018.

LightGCN

10 0.2195 0.3283 0.2631 4.13

20 0.2382 0.3536 0.2846 3.50

30 0.2376 0.3558 0.2849 3.53

40 0.2398 0.3594 0.2877 3.51

50 0.2313 0.3589 0.2813 3.54

about:blank

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-13, Issue-04, No.06, April : 2023

Pag | 177 DOI10.36893.JK.2023.V13I04N16.00168-00177 Copyright@2023 Author

[14] [14] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.S. Chua, "Neural collaborative filtering,"

In Proceedings of the 26th international conference on world wide web, pp. 173-182, 2017.

[15] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, Tat-Seng Chua, “ Neural Graph

Collaborative Filtering”.

[16] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, Meng Wang, “LightGCN:

Simplifying and Powering Graph Convolution Network for Recommendation”.

[17] V. S. Rao, V. Mounika, N. R. Sai and G. S. C. Kumar, "Usage of Saliency Prior Maps for

Detection of Salient Object Features," 2021 Fifth International Conference on I-SMAC (IoT in

Social, Mobile, Analytics and Cloud) (I-SMAC), 2021, pp. 819-825, doi: 10.1109/I-

SMAC52330.2021.9640684

