INFILLING OF URBAN WETLANDS DUE TO URBAN HOUSING PROJECTS: AN ANALYSIS AND PREDICTION OF WATER QUALITY PARAMETERS OF KONNAGAR-HINDMOTOR WETLANDS, WEST BENGAL USING MULTIPLE LAYER PERCEPTRON MODEL

Arpita Chaudhury Aich, Research Scholar, Natural and Applied Sciences Research Centre,
Department of Geography, Raja NarendraLal Khan Women's College (Autonomous), Vidyasagar
University Midnapore (West Bengal)
Dr. Bela Das, Associate Professor, Department of Geography, Raja NarendraLal Khan Women's

College (Autonomous), Vidyasagar University Midnapore (West Bengal)

ABSTRACT:

Wetlands have a unique property of undergoing changes due to natural factors as well as anthropogenic factors. They are altered for agriculture, constructing residential projects etc. leading to pollution and modification of the hydrological regime. Urban wetlands and Geographical Isolated wetlands are undergoing transformation at an alarming rate owing to unsustainable progress in the name of development. The Konnagar-Hindmotor wetlands being an Urban Geographical Isolated Wetland is facing severe infilling owing to construction activity in the name urban housing projects. The paper aims to measure the present condition of the water quality parameters and estimate the future health of the water of the wetlands by predicting through multiple layer perceptron model using artificial neural networks. Water samples were collected from the wetlands by dividing the wetlands into environmental impact units considering the extent of the human disturbances to understand the present status. The results showed that the water quality of the wetland is at huge risk and it is predicted to deteriorate further leading to complete disruption in the normal functioning of the ecosystem of the area.

Key-words:Multiple layer Perceptron Model; Urban Geographical Isolated Wetlands; Water Quality Parameters; Wetland Infilling.

INTRODUCTION:

The definition of Wetlands owing to its extremely dynamic nature has been extremely debatable since ages. Wetlands still continue to a debatable topic wherein because of its diversity in its nature and type, there has not been any universal single definition. The Convention On Wetlands (Ramsar, Iran, 1971) have come up with the criteria's for identification of wetlands mainly on the basis of criteria based on rare or unique types of wetland, as sites of biological importance Apart from the definition given by Ramsar convention, there are several types of wetlands which are not as popular as the wetlands classified under Ramsar convention. Geographically Isolated Wetlands (GIW)'s are defined as wetlands which has not apparent surface water connectivity to perennial rivers, streams, seas or ocean. They are mostly surrounded by drier pastures. Differences in regional geography, slope, hydrology, climatic conditions have led to the formation of these wetlands¹. Wetlands have a unique property of undergoing changes continuously due to natural factors. Apart from the natural factors causing changes in wetlands, anthropogenic factors are also causing deterioration in the extent of wetlands. This is mainly due to ignorance about the value of wetlands. Even though the total loss of world wetlands is difficult to determine² record that more than half of the world's wetlands is lost. Wetlands were converted to agricultural fields and commercial or residential spaces. They were altered for agriculture, highway construction, mining, constructing residential or commercial buildings etc. leading to pollution and modification of the hydrological regime. Urban wetlands and Geographical isolated Wetlands are amongst the most efficient socio-ecological hotspots in the cities⁴. With flood control, they also secure the food supply chain to the city in events of disrupted rural-urban connectivity during floods. With the changing face of the wetlands owing to anthropogenic factors namely infilling of wetlands in the name of development is also leading to a

ISSN: 2278-4632 Vol-14, Issue-11, No.02,November: 2024

drastic change in the overall parameters of water quality of the wetlands, thereby disrupting the entire ecosystem⁶. Due to various pollution sources and other factors, humans have exploited aquatic habitats particularly wetlands over the ages to the point where extremely few of the wetlands in their original form ceases to exist⁹. A catchment plays an important role as it is responsible for the quality and quantity of runoff generated during and after an event of rain and storm. Hence, land use type within a catchment is extremely important for estimating water quality of the water resources¹². Therefore, as human activities rise, many of the problems associated with water contamination are caused by changes in the type of land use within a catchment⁵. Among various aquatic ecosystems, wetlands are important for improving the water quality of other bodies of water, like rivers, at the catchment-scale. However, it is also impacted by change in the land use, composition of their catchments as a result of human activity¹¹. Significant researches conducted have inferred that the there exists a negative effect on water quality owing to a relationship between impervious cover of urban areas and sources of non-point pollution which inturn results in the degradation of wetland ecosystems caused by changes in the composition of land use of their catchments¹⁰. While impermeable coverings do not cause pollution, they do cause hydrological changes that are the source of many physical and biological effects that degrade the quality of water bodies, including wetlands and streams⁸.

Urban environments are more hydrologically active due to their imperviousness, and even little rainfalls can carry accumulated pollution into bodies of water³. A connection between impermeable cover and in-stream water quality degradation has been proposed by a number of authors⁷, with regard to the evaluation of the water quality characteristics of streams.

Recent urbanization and suburbanization in the regions of Sreerampore, Uttarpara belt has led to construction of innumerable high rises owing to the close proximity to Kolkata. Few of them are constructed at the cost of infilling Wetlands.

OBJECTIVES:

- i. To analyse the present status of water quality using the water quality testing parameters of the Konnagar-Hindmotor Wetlands.
- ii. To forecast the future health of the water quality of the wetlands from the present parameters of water quality using multi-layer perceptron model

STUDY AREA:

The study area Konnagar-Hindmotor wetland (22°40'2 0''N to 22°42'30'N, 88°22'30''1E to 88°17' 30''E) is an Urban Geographical Isolated Wetland, situated in the Hooghly district of West Bengal. The wetlands have been formed due to sluggish streams and many saucers shaped depressions in a flat alluvial plain forming massive creeks and marshes. The Konnagar-Hindmotor wetlands is a 280 acres water body which facing a severe threat of infilling due to massive unsustainable urbanisation surrounding the water body in the form construction activity for housing development. The wetland serves as an important source of livelihood for the local fisherman, fruit growers. It serves as an important function like entire stormwater passage from Chapdani, Baidyabati, Konnagar,Rishra is being fed into the wetland.

Figure 1. Showing location of Study Area (Konnagar-Hindmotor Wetlands).

Source: Author's own

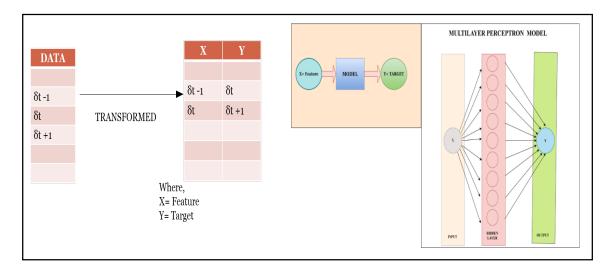
METHODOLOGY:

To analyse the status of the parameters of water quality, the study area was de-lineated on the basis of distance from the construction site. Water Samples were collected by partitioning the study area into environmental impact units' inconsideration of the extent of the human disturbances

A. Core Construction environmental impact unit site just adjacent to the construction site designated as 'Site A'.

B. Semi-Core construction environmental impact units approximately 50 meters away from construction site designated as 'Site B'.

C. Partially- construction environmental impact units approximately 100 meters away from construction site designated as 'Site C'.


D. Buffer environmental impact units approximately 150 meters away from construction site designated as 'Site D'.

For measuring the water quality and the ecological health of the wetlands, the water from the wetlands was tested by collecting water samples in the time periods namely in the month of May designated as Pre monsoon (PRM), Monsoonal months of July- September designated as MON, and post Monsoon months of February designated as POM. The water samples were tested in laboratory under specific test methods for different parameters within 12 hours from the collection of the samples.

DATASET ANALYSIS:

The means of the three time periods were taken to determine the present water quality were: Total Dissolved Solids (TDS), Chloride, Dissolved Oxygen (DO), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Electrical conductivity, Ammonia, Nitrate, Fecal streptococci and Fecal Coliform Bacteria. The means of the four sites were compared with increase in distance to estimate the impact of construction activity on the water quality parameters with the increasing distance from core construction site.

Based on the results, the data was trained using machine learning, and Multilayer Perceptron Model was used using Artificial Neural Network (Fig 2) to predict the future health of the water of the wetlands.

Figure 2. Showing Methodology of Multiple Perceptron Model using Artificial Neural Network

Source: Author's own

RESULTS AND DISCUSSION:

The site-specific results are as follows. For Site A and Site B (Table 1) i.e. in the Core Construction environmental impact unit and Semi-Core construction environmental impact units, Total dissolved Solid (TDS) content is very high and in Site B TDS is lesser to Site A. Chloride content is also very high in both the units suggesting construction activities. Ammonia content is very high which clearly indicates high fecal contamination. Nitrate content in site A and in site B is also high which is rare for public utility. It is carcinogenic in nature. The Biological Oxygen Demand is very high (moderately polluted waters have a range between 2–8 mg/l) which suggests that is not suitable for aquatic elements. The normal values of COD incase of surface water ranges from 5 to 20 mg/l. High levels of COD indicates dissolved oxygen depleting high concentrations of organic and inorganic pollutants leading to negative environmental imbalance. Dissolved oxygen plays an important role in the sustenance and survival of aquatic life. Here, Dissolved Oxygen rate is also very low. There is presence of fecal coliform bacteria and fecal coliform streptococci which suggests open defecation or mixing with human fecal matter in the wetland water owing to human intervention during construction activity.

Sit	Paramete	Mea	Test	Unit	Sit	Paramete	Mea	Test	Unit
e	rs	n	Method	Umt	e	rs	n	Method	Unit
	Total Dissolved solid (TDS)	1401	IS:3025(Pa rt-16):1984	mg/l	В	Total Dissolved solid (TDS)	701	IS:3025(Pa rt-16):1984	mg/l
	Chloride	358	IS:3025(Pa rt-32):1988	mg/l		Chloride	112	IS:3025(Pa rt-32):1988	mg/l
	Dissolved Oxygen (DO)	5.3	IS:3025(Pa rt-38)	mg/l		Dissolved Oxygen (DO)	5	IS:3025(Pa rt-38)	mg/l
	Biological Oxygen Demand (BOD)	65	IS:3024(Pa rt-44):1993	mg/l		Biological Oxygen Demand (BOD)	11	IS:3024(Pa rt-44):1993	mg/l
A	Chemical Oxygen Demand (COD)	232	APHA 23rd Edition 5220B	mg/l		Chemical Oxygen Demand (COD)	38	APHA 23rd Edition 5220B	mg/l
	Conductiv ity as 25*c	1921	IS:3025(P art- 14):1984			Conductiv ity as 25*c	826	IS:3025(P art- 14):1984	
	Ammonia (NH3-N)	29	IS:3025(Pa rt-34)	mg/l		Ammonia (NH3-N)	12.1	IS:3025(Pa rt-34)	mg/l
	Nitrate as NO3	47	IS:3025(Pa rt-34):1988	mg/l		Nitrate as NO3	51.2	IS:3025(Pa rt-34):1988	mg/l
	Fecal			MPN/C		Fecal			MPN/C
	Streptococ ci	1103		FU per 100 ml		Streptococ ci	710		FU per 100 ml
	Fecal			MPN/C		Fecal			MPN/C
	Coliform			FU per		Coliform			FU per
	Bacteria	2112		100 ml		Bacteria	1112		100 ml

Table 1. Water quality parameters for Site A and Site B.

Source: Results tested at laboratory

For site C and Site D i.e. Partially- construction environmental impact units and Buffer environmental impact units (table 2), Nitrate content is also high which is rare for public utility. It is carcinogenic in nature. The Biological Oxygen Demand is very high which suggests that is not suitable for aquatic elements. Dissolved Oxygen rate is also very low.

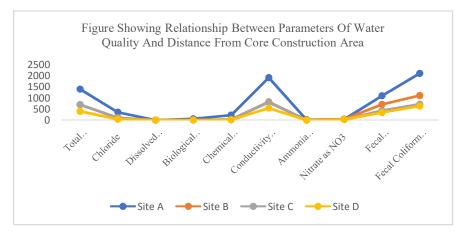
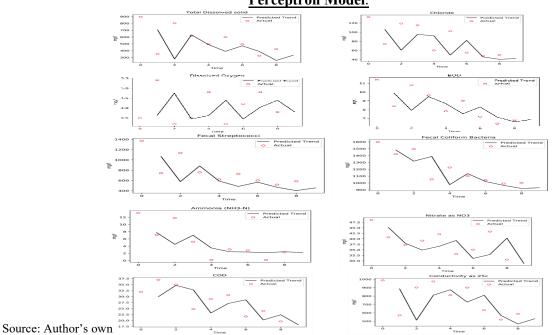

Paramete	Mea	Test	Unit	Sit	Paramete	Mea	Test	Unit
rs	n	Method	Unit	e	rs	n	Method	Unit
Total Dissolved solid (TDS)	583	IS:3025(Pa rt-16):1984	mg/l	D	Total Dissolved solid (TDS)	401	IS:3025(Pa rt-16):1984	mg/l
Chloride	99	IS:3025(Pa rt-32):1988	mg/l		Chloride	43	IS:3025(Pa rt-32):1988	mg/l
Dissolved Oxygen (DO)	4.2	IS:3025(Pa rt-38)	mg/l		Dissolved Oxygen (DO)	4	IS:3025(Pa rt-38)	mg/l
Biological Oxygen Demand (BOD)	9.4	IS:3024(Pa rt-44):1993	mg/l		Biological Oxygen Demand (BOD)	5.2	IS:3024(Pa rt-44):1993	mg/l
Chemical Oxygen Demand (COD)	25	APHA 23rd Edition 5220B	mg/l		Chemical Oxygen Demand (COD)	18.5	APHA 23rd Edition 5220B	mg/l
Conductiv ity as 25*c	810	IS:3025(P art- 14):1984			Conductiv ity as 25*c	550	IS:3025(P art- 14):1984	
Ammonia (NH3-N)	6.7	IS:3025(Pa rt-34)	mg/l		Ammonia (NH3-N)	2.2	IS:3025(Pa rt-34)	mg/l
Nitrate as NO3	31.5	IS:3025(Pa rt-34):1988	mg/l		Nitrate as NO3	28.6	IS:3025(Pa rt-34):1988	mg/l
Fecal Streptococ ci	440		MPN/C FU per 100 ml		Fecal Streptococ ci	351		MPN/C FU per 100 ml
Fecal Coliform Bacteria	700		MPN/C FU per 100 ml		Fecal Coliform Bacteria	(42)		MPN/C FU per 100 ml
	rs Total Dissolved solid (TDS) Chloride Dissolved Oxygen (DO) Biological Oxygen Demand (BOD) Chemical Oxygen Demand (COD) Conductiv ity as 25*c Ammonia (NH3-N) Nitrate as NO3 Fecal Streptococ ci	rsnTotal	rsnMethodTotal Dissolved solid (TDS)IS:3025(Pa rt-16):1984Chloride99IS:3025(Pa rt-32):1988Dissolved Oxygen (DO)1S:3025(Pa rt-32):1988Dissolved Oxygen (DO)1S:3025(Pa rt-38)Biological Oxygen Demand (BOD)1S:3024(Pa rt-44):1993Chemical Oxygen23rd Edition Edition (COD)Conductiv ity as 25*cIS:3025(Pa rt-34)Nitrate as NO3IS:3025(Pa art- art- 810Nitrate as Streptococ ciIS:3025(Pa rt-34):1988Fecal Streptococ ciIS:3025(Pa rt-34):1988Fecal Coliform BacteriaA	rsnMethodUnitTotal Dissolved solid (TDS)IS:3025(Pa rt-16):1984mg/lChloride99IS:3025(Pa rt-32):1988mg/lDissolved Oxygen (DO)4.2IS:3025(Pa rt-38)mg/lBiological Oxygen (DO)4.2IS:3024(Pa rt-44):1993mg/lBiological Oxygen.APHA 23rd Editionmg/lOchemical Oxygen.APHA 23rd Editionmg/lChemical Oxygen.IS:3025(Pa rt-38)mg/lChemical Oxygen.APHA 23rd Editionmg/lConductiv ity as 25*cIS:3025(Pa streptococ 31.5mg/lNitrate as NO3.IS:3025(Pa art- 14):1984mg/lNitrate as NO3.IS:3025(Pa art- 14):1984mg/lFecal Streptococ ci.IS:3025(Pa art- 14):1988mg/lFecal Coliform Bacteria.MPN/C FU per 100 ml	rsnMethodUniteTotal Dissolved solid (TDS)IS:3025(Pa rt-16):1984mg/lmg/lChloride 0991S:3025(Pa rt-32):1988mg/lmg/lDissolved Oxygen (DO)IS:3025(Pa rt-32):1988mg/lmg/lDissolved Oxygen (DO)IS:3025(Pa rt-38)mg/lmg/lBiological OxygenIS:3025(Pa rt-38)mg/lmg/lOxygen Demand (COD)IS:3024(Pa rt-44):1993mg/lmg/lChemical OxygenAPHA 23rd Edition tionmg/lmg/lConductiv ity as 25*cIS:3025(Pa rt-34)mg/lmg/lNitrate as NO3IS:3025(Pa art- 810mg/lmg/lNitrate as Coliform BacteriaIS:3025(Pa art-34):1988mg/lFecal Coliform BacteriaIS:3025(Pa art-34):1988mg/l	rsnMethodUnitersTotal Dissolved solid (TDS)IS:3025(Pa rt-16):1984mg/lTotal Dissolved solid (TDS)Chloride 991S:3025(Pa rt-32):1988mg/lChlorideDissolved Oxygen (DO)IS:3025(Pa rt-38)mg/lDissolved Oxygen (DO)Biological Oxygen (BOD)IS:3024(Pa rt-44):1993mg/lDissolved Oxygen (DO)Biological Oxygen Demand (COD)APHA 23rd art- 810mg/lBiological Oxygen (DO)Conductiv ity as 25*c 810IS:3025(Pa art- 810mg/lChemical Oxygen Demand (COD)Conductiv ity as 25*c sino (NH3-N)IS:3025(Pa art- art- att- art- att- art- att-mg/lNitrate as NO3IS:3025(Pa art-34)mg/lNitrate as NO3Fecal Coliform BacteriaIS:3025(Pa att- att- att- att- att- att- att-mg/lFecal Coliform BacteriaMPN/C FU per l00 mlFecal Coliform Bacteria	rsnMethodUnitersnTotal Dissolved solid (TDS)IS:3025(Pa rt-16):1984 mg/l Total Dissolved solid (TDS)Total Dissolved solid (TDS)IS:3025(Pa rt-32):1988 mg/l Total Dissolved solid (TDS)401Chloride Oxygen Demand (BOD)IS:3025(Pa rt-38) mg/l Chloride (DO)4Biological Oxygen Demand (COD)IS:3024(Pa rt-44):1993 mg/l Dissolved (DO)4Biological Oxygen Demand (COD)IS:3025(Pa rt-44):1993 mg/l Dissolved (DO)0Chemical Oxygen Demand (COD)APHA 23rd rt-44):1993 mg/l Disological Oxygen mg/lOxygen Demand (BOD)5.2Conductiv ity as 25*cIS:3025(Pa art- 14):1984 mg/l Total Dissolved Oxygen Demand (COD)18.5Conductiv ity as 25*c s10IS:3025(Pa art- 14):1984 mg/l Total Dissolved Oxygen Demand (COD)18.5Conductiv ity as 25*c s10IS:3025(Pa art-34):1988 mg/l MPN/C FU per 100 mlNitrate as NO32.2Nitrate as NO3IS:3025(Pa art-34):1988 mg/l Nitrate as NO32.2Fecal Coliform BacteriaIS:3025(Pa art-34):1988 mg/l Nitrate as NO32.2Fecal Coliform BacteriaIS:3025(Pa art-34):1988 mg/l IS:302Nitrate as SNO3NO3 2.2Fecal Coliform Bacteria <t< td=""><td>rsnMethodUnitersnMethodTotal Dissolved solidIS:3025(Pa rt-16):1984mg/lTotal Dissolved solidIS:3025(Pa rt-16):1984Total Dissolved solidIS:3025(Pa rt-32):1988Total mg/lIS:3025(Pa rt-32):1988Total Dissolved (TDS)IS:3025(Pa rt-32):1988IS:3025(Pa rt-32):1988IS:3025(Pa rt-32):1988IS:3025(Pa rt-32):1988IS:3025(Pa rt-32):1988IS:3025(Pa rt-32):1988IS:3025(Pa rt-32):1988Dissolved Oxygen (DO)4.2IS:3024(Pa rt-44):1993mg/lIS:3024(Pa Oxygen (DO)IS:3024(Pa rt-44):1993IS:3025(Pa rt-34):1988Biological Oxygen (BOD)9.4IS:3025(Pa rt-34):1993mg/lIS:3024(Pa Oxygen (BOD)IS:3024(Pa rt-44):1993Chemical Oxygen (COD)APHA 23rd Edition (COD)1S:3025(Pa at- rt-44):1993mg/lIS:3024(Pa Oxygen (BOD)IS:3024(Pa rt-44):1993Conductiv ity as 25*c soIS:3025(Pa at- at- 14):1984mg/lIS:3025(Pa at- at- ity as 25*cIS:3025(Pa sto14):1984Nitrate as NO3 sol1:IS:3025(Pa rt-34):1988mg/lNitrate as Sto25(Pa sol2:IS:3025(Pa sol2:No3 sol1:IS:3025(Pa rt-34):1988mg/lNitrate as Sto2:IS:3025(Pa rt-34):1988Fecal Coliform BacteriaIS:3025(Pa rt-34):1988MPN/C FU per I00 mlFecal Streptococ ciIS:3025(Pa rt-34):1988</td></t<>	rsnMethodUnitersnMethodTotal Dissolved solidIS:3025(Pa rt-16):1984mg/lTotal Dissolved solidIS:3025(Pa rt-16):1984Total Dissolved solidIS:3025(Pa rt-32):1988Total mg/lIS:3025(Pa rt-32):1988Total Dissolved (TDS)IS:3025(Pa rt-32):1988IS:3025(Pa rt-32):1988IS:3025(Pa rt-32):1988IS:3025(Pa rt-32):1988IS:3025(Pa rt-32):1988IS:3025(Pa rt-32):1988IS:3025(Pa rt-32):1988Dissolved Oxygen (DO)4.2IS:3024(Pa rt-44):1993mg/lIS:3024(Pa Oxygen (DO)IS:3024(Pa rt-44):1993IS:3025(Pa rt-34):1988Biological Oxygen (BOD)9.4IS:3025(Pa rt-34):1993mg/lIS:3024(Pa Oxygen (BOD)IS:3024(Pa rt-44):1993Chemical Oxygen (COD)APHA 23rd Edition (COD)1S:3025(Pa at- rt-44):1993mg/lIS:3024(Pa Oxygen (BOD)IS:3024(Pa rt-44):1993Conductiv ity as 25*c soIS:3025(Pa at- at- 14):1984mg/lIS:3025(Pa at- at- ity as 25*cIS:3025(Pa sto14):1984Nitrate as NO3 sol1:IS:3025(Pa rt-34):1988mg/lNitrate as Sto25(Pa sol2:IS:3025(Pa sol2:No3 sol1:IS:3025(Pa rt-34):1988mg/lNitrate as Sto2:IS:3025(Pa rt-34):1988Fecal Coliform BacteriaIS:3025(Pa rt-34):1988MPN/C FU per I00 mlFecal Streptococ ciIS:3025(Pa rt-34):1988

Table 2. Showing water quality parameters for Site C and Site D.

Source: Results tested at laboratory

However, the values of the parameters of water quality of the wetland sites improves with increase in distance from the core construction area, thereby suggesting the core construction area is the worst affected part of the wetland (Fig 3.).


Figure 3: Relationship between Parameters of Water Quality and Distance from Core Construction Area.

Source: Author's own

However, given the status of the water quality the future of the wetlands was important task to ascertain so that timely measures could be taken. The Multilayer Perceptron Model predicted a further deterioration in the parameters of measuring water quality (Figure 4). It has been predicted by machine learning model that there will be further increase in the levels of TDS, chloride, BOD, Conductivity of water, fecal streptococci and fecal coliform bacteria in the water of the wetlands in the near future. At the same time, there will be decline in DO levels, COD and Ammonia and nitrate levels, thus the water health of the wetlands will be compromised.

Figure 4. Showing the Predicted Trend of Water Quality Parameters Using Multiple Layer Perceptron Model.

CONCLUSION :

Thus, from the study it has been absolutely clear, that the infilling of the Konnagar-Hindmotor wetlands owing to the upcoming real estate project has already wrecked a havoc in the quality of water of the wetlands. The deterioration of the water health is directly related to the health of the wetland's ecosystem. The direct and indirect stakeholders of the wetlands is getting affected and will be highly affected in the near future as the model has predicted a further deterioration in the water health, thereby leading to the complete disruption in the normal functioning of the wetland ecosystem. The need of the hour is sustainable management of the wetlands. It requires adoption of a comprehensive policy so there is a greater protection of the wetlands and the stakeholders take the entire opportunity to protect the wetlands.

REFERENCES:

- Aich, A. C., & Das, B., (2022). "Rethinking Urbanization, Reviving Wetlands: A Study on Wetland Loss and Environmental Degradation between East Kolkata Wetlands and Konnagar-Hindmotor Wetlands Due to Urbanization", West Bengal., Inclusive, Vol-II, No 22, 169-181
- 2. Arnold CL, Gibbons CJ (1996) "Impervious surface coverage: the emergence of a key environmental indicato"r. J Am PlannAssoc 62:243
- 3. Basnyat P, Teeter D, Flynn KM, Lockaby BG (1999) "Relationships between landscape characteristics and nonpoint source pollution inputs to coastal estuaries". Environ Manag 23:539–549
- Boskidis I, Gikas GD, Pisinaras V, Tsihrintzis VA (2011) "Spatial and temporal changes of water quality, and SWAT modeling of Vosvozis River Basin, North Greece". J Environ Sci Health A 45(15):421–1440
- 5. Gikas GD, Yiannakopoulou T, Tsihrintzis VA (2006) "Water quality trends in a coastal lagoon impacted by non-point source pollution after implementation of protective measures". Hydrobiologia 563(1):385–406
- 6. Gregory MB, Calhoun DL (2007) "Physical, chemical, and biological responses of streams to increasing watershed urbanization in the piedmont ecoregion of Georgia and Alabama; Chapter B of effects of urbanization on stream ecosystems in six Metropolitan areas of the United States"; U.S. Geological Survey Scientific Investigations Report 2006-5101-B: Reston, VA, USA, 2007; p.104; available online only at http://pubs.usgs.gov/sir/2006/5101B (accessed on July 2010)
- Helms BS, Schoonover JE, Feminella JW (2009) "Assessing influences of hydrology, physicochemistry, and habitat on stream fish assemblages across a changing landscape". J Am Water ResourAssoc 45:157–169
- 8. May CW, Horner R, Karr J, Mar B, Welch E (1997) "Effects of urbanization on small streams in the puget sound lowland ecoregion". Watershed Prot Tech 2(4):483–494
- 9. Ngoye E, Machiwa J (2004) "The influence of land use patterns in the ruvu river catchment on water quality in the river system". PhysChem Earth 29:1161–1166
- Papastergiadou ES, Retalis A, Apostolakis A, Georgiadis T (2008) "Environmental monitoring of spatiotemporal changes using remote sensing and GIS in a Mediterranean Wetland of Northern Greece". Water Resource Manag 22:579–594
- 11. Plameri L, Treppel M (2002) "A GIS-based score system for siting and sizing of created or restored wetlands: two case studies". Water Resource Manag 16:307–328
- 12. Richards C, Host G (1994) "Examining land use influences on stream habitats and macroinvertebrates". Water Resour Bull 30:729–739