INTEGRATING CHATGPT IN HIGHER EDUCATION: A SYSTEMATIC REVIEW OF APPLICATIONS, CHALLENGES, AND FUTURE DIRECTIONS

Dr. Zainab Musheer, Research Assistant, Department of Education, Aligarh Muslim University **Dr. Gunjan Dubey**, Professor, Department of Education, Aligarh Muslim University

Abstract

Purpose: The rapid advancement of artificial intelligence (AI) has introduced transformative opportunities and emerging challenges within higher education. Since its launch in 2022, ChatGPT has been increasingly adopted as a generative AI tool, prompting growing academic interest in its applications across teaching, learning, assessment, and research. This study aims to systematically review and synthesize peer-reviewed literature on ChatGPT's role in higher education, focusing on its practical applications, associated challenges, and future research directions.

Design/Methodology/Approach: A systematic review was conducted based on peer-reviewed studies published between 2023 and 2025, identified through Scopus and Web of Science databases. The review included both quantitative and qualitative studies, emphasizing empirical research on ChatGPT's educational applications.

Findings: The review revealed that ChatGPT is increasingly integrated into higher education for assessment support, academic writing assistance, and computational learning aid. While students benefit from enhanced engagement and efficiency, educators' express concerns over academic integrity, misinformation, and AI bias. Most studies emphasize the need for AI literacy and responsible usage policies. Geographic and disciplinary diversity in research highlights growing global interest and evolving applications of ChatGPT in academia.

Practical Implications: The review provides actionable insights for educators, researchers, and policymakers. It underscores the need for clear institutional policies, development of AI literacy programs, and frameworks to ensure ethical and pedagogically sound use of ChatGPT in higher education.

Originality/Value: This systematic review offers a comprehensive synthesis of emerging empirical evidence on ChatGPT in higher education. It identifies key trends, uncovers gaps in current research, and outlines future directions to guide responsible and effective integration of AI in academic contexts.

Keywords: ChatGPT, Higher Education, Systematic Review, Artificial Intelligence, Academic Integrity, Assessment, Personalized Learning.

Introduction

The rapid advancement of technology particularly in the wake of the COVID-19 pandemic has transformed digital tools from simple problem-solving instruments into innovative platforms capable of generating knowledge and fostering continuous human interaction [1]. This transformation is driven by growing interest in technological innovation [2], significant improvements in computing power [3], and the increasing integration of digital networks [4]. Among the most notable developments is the emergence of advanced AI-powered chatbots. ChatGPT, being one such tool launched in November 2022, was specifically designed to facilitate natural, human like conversations [5, 6]. With its ability to produce coherent and contextually relevant text, ChatGPT has demonstrated value across diverse domains including academic research, online education, content creation, and personalized learning [7, 8, 9].

In higher education, ChatGPT's ability to deliver rapid, human-like responses has made it a widely adopted tool [10]. It supports a range of academic activities such as providing instant feedback, assisting with writing assignments, and fostering the development of critical thinking skills [11, 12]. A distinguishing feature of ChatGPT is its adaptability, it can evolve through user feedback, improving its accuracy and contextual relevance over time [13]. Its expansive knowledge base and responsiveness make it a valuable resource for both students and educators [14].

By integrating ChatGPT into educational platforms, institutions have improved access to learning resources and facilitated more unified, interactive engagement between instructors and students [15, 16]. Its cloud-based infrastructure ensures that learners from diverse geographical and socioeconomic backgrounds can benefit from its features, promoting educational equity and efficiency [17]. ChatGPT also contributes to academic support by answering queries, generating study materials, and offering tutoring assistance, thus enriching the learning experience [18]. Furthermore, it offers a cost-effective alternative to traditional academic resources by delivering automated feedback and supplementary instructional support, making learning more accessible and scalable [19].

Despite these advantages, the use of ChatGPT in education raises significant challenges. While it provides rapid access to information and fosters engagement, concerns have emerged regarding academic integrity, misinformation, and the overreliance on AI-generated content [20, 21]. Overdependence on such tools may hinder the development of critical academic skills including problem-solving, independent thinking, and originality [22, 23]. These concerns raise important ethical questions surrounding plagiarism, authorship, and responsible AI use in educational contexts. Additionally, the potential for bias and inaccuracies in AI-generated responses underscores the need for cautious and ethical implementation of such tools in higher education (Bender, 2024; Lo, Hew, & Jong 2024).

Evolution of ChatGPT

The development of ChatGPT marks a significant milestone in the evolution of AI-powered language models. OpenAI's exploration into AI-generated text began as early as 2016, laying the groundwork for the creation of increasingly sophisticated natural language processing systems [24]. This research culminated in the launch of ChatGPT on November 30, 2022, powered by the GPT-3.5 model, a breakthrough in conversational AI [25].

The platform witnessed unprecedented growth, reaching 100 million users by February 2023, making it one of the fastest-growing AI applications in history [26]. That same month, OpenAI introduced ChatGPT Plus, a subscription-based offering that provided users with enhanced performance and priority access to services. Building on this momentum, March 2023 saw the release of GPT-4, a more advanced iteration that exhibited greater contextual understanding, improved reasoning, and enhanced text generation capabilities [9].

As enterprise demand for generative AI solutions surged, OpenAI launched ChatGPT Enterprise in August 2023, delivering tailored features for organizational use, such as heightened security and integration capabilities [27]. Continuing this trajectory, May 2024 marked the introduction of GPT-40, a multimodal model designed to handle text, image, and audio inputs, enabling more dynamic and interactive user experiences [28].

By August 2024, ChatGPT reached a notable milestone of over 200 million weekly active users, solidifying its position as a leading AI-powered communication tool in both academic and professional contexts [29]. This rapid evolution underscores the growing integration of AI tools into everyday practices, highlighting the importance of further research into their ethical, technological, and societal implications [30]. This timeline will be clear from fig 1:

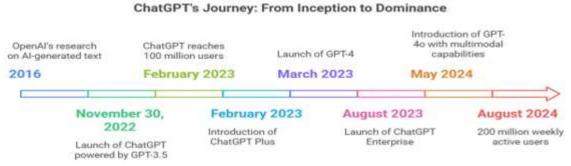


Fig 1: Timeline of ChatGPT Evolution

Problem Statement

Despite the growing body of research on the use of ChatGPT in higher education, there remains a need for a comprehensive and systematic review of existing literature. While numerous studies have explored various applications, challenges, and implications of ChatGPT, these insights are often fragmented and lack synthesis. A systematic review is essential to identify, evaluate, and integrate prior findings in order to develop a holistic understanding of ChatGPT's role in academic contexts. This study aims to address that gap by consolidating current evidence, highlighting emerging trends, and identifying areas requiring further investigation. The findings will offer valuable insights for educators, researchers, and policymakers, supporting the responsible and effective integration of AI technologies like ChatGPT in higher education.

Literature Review

The integration of artificial intelligence (AI) into higher education has significantly transformed teaching, learning, and administrative processes. Since the early applications of AI in the 1960s, such as the PLATO system for computer-assisted learning [31], advancements in deep learning and natural language processing (NLP) have enabled the development of more sophisticated tools, including chatbots and virtual tutors [32]. The COVID-19 pandemic further accelerated AI adoption as institutions sought digital solutions for remote learning and assessment [33]. One prominent AI tool, ChatGPT, introduced in 2022, has become widely used in academia due to its ability to generate human-like responses. It supports academic writing by assisting students with essay drafting, paraphrasing, and improving grammar and coherence [14]. However, this use also raises concerns about originality and academic integrity, as AI-generated content may lead to plagiarism and reduce student engagement in critical thinking [22, 23].

Additionally, ChatGPT enables personalized learning by adapting to individual needs and offering tailored explanations, enhancing accessibility for students requiring extra support outside traditional classrooms [34, 16]. In research, AI tools like ChatGPT assist with summarizing literature, managing citations, and generating research ideas, thus enhancing academic efficiency [18]. However, issues such as the credibility of AI-generated references and the accuracy of content remain significant challenges [35]. Administratively, ChatGPT has been integrated into university systems to automate grading, handle student inquiries, and manage course tasks, which improves operational efficiency but also raises ethical concerns regarding data privacy, algorithmic bias, and the implications of automating academic processes [15, 20, 36]. One of the most pressing challenges is maintaining academic integrity, as excessive reliance on AI tools can foster plagiarism and impede the development of problem-solving and critical thinking skills [37, 38]. Ethical concerns have led institutions to reassess assessment strategies and promote responsible AI use [39]. Moreover, the risk of misinformation and bias in AI-generated responses highlight the need for verifying content before incorporating it into academic work [40, 30]. Data privacy is another concern, as AI interactions often involve sensitive information, and without clear regulations, institutions may struggle to safeguard user data [41]. The lack of standardized policies on AI use further complicates its implementation, necessitating clear guidelines that address ethical risks, academic integrity, and institutional responsibilities [42]. With growing interest in the role of ChatGPT in education, bibliometric studies reveal an increasing volume of interdisciplinary research focused on its applications [43]. However, there is still limited understanding of its long-term impact on student outcomes and educational policies. Future research should focus on developing ethical guidelines, implementing pedagogical models that encourage critical thinking, and creating AI literacy programs for educators and students. As AI continues to evolve, ongoing dialogue among educators, researchers, and policymakers will be crucial for managing its ethical implications and maximizing its benefits in higher education [44, 32].

Research Gap

The existing literature highlights the increasing integration of ChatGPT in higher education, where it is widely used for academic writing, tutoring, and research assistance. Numerous studies have investigated its role in personalized learning, automated assessment, and academic support, offering

insights into its benefits and limitations. Additionally, concerns related to ethical implications, misinformation, and academic integrity have been frequently discussed.

However, a comprehensive systematic review of ChatGPT's overall impact on higher education is still lacking. Most existing studies focus on isolated aspects such as student engagement, assessment design, or AI ethics without providing a holistic understanding of its evolving role across disciplines and institutional contexts. Therefore, this study aims to fill that gap by systematically reviewing the literature to assess research trends, identify key challenges, and propose future directions for the effective and ethical integration of ChatGPT in higher education.

Research Questions

The present systematic review seeks to address the following research questions:

- 1. What are the emerging research trends in studies related to ChatGPT in higher education?
- 2. What types of research designs and methodologies have been employed in studies examining ChatGPT's role in academic settings?
- 3. How has the research on ChatGPT in higher education evolved across different disciplines and geographical regions?
- 4. What are the key challenges and ethical concerns identified in existing studies on ChatGPT in higher education?
- 5. What future research directions have been suggested to enhance the responsible and effective use of ChatGPT in higher education?

Methodology

This study employs a systematic review to analyze the research characteristics of ChatGPT in higher education. The RAMESES method (Realist and Meta-narrative Evidence Syntheses: Evolving Standards) was chosen over PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) due to its suitability for social science research (Moher, 2009). The systematic review examines existing research trends, key themes, and challenges associated with ChatGPT in higher education.

Data were collected from two of the most comprehensive academic databases: Scopus and Web of Science (WoS). This approach provides valuable insights into the evolving role of ChatGPT in higher education, offering a structured overview of the current research trend and highlighting key areas for future investigation

Steps for Systematic Review Process

a. Identification: The first step in the process of systematic review is the identification. This step involves identification of the keywords followed by searching possible related terms or synonym terms based on the encyclopedia, thesaurus, dictionaries, and previous researches. After brainstorming the list of synonym words related to ChatGPT was listed. Moving forward involved linking synonym, related words with "OR" and using truncation (*) for multiple variations of the word. This assisted in developing a search strings (table 1) that can be used to retrieve relevant resources from the database. In the first step of systematic review, 574 documents were retrieved. This included 321 studies from Scopus and 253 studies from WoS.

Table 1: Search Strategy and Databases

Databases	Search Query Keywords
Scopus	TITLE-ABS-KEY= ("ChatGPT" OR "AI in education" OR "AI tutoring
_	system" OR "artificial intelligence in higher education" OR "AI-assisted
	learning" OR "educational chatbots" OR "AI assessment tools" OR
	"ChatGPT research")

	<u>, </u>	
Web of	TS = ("ChatGPT" OR "AI in education" OR "AI tutoring system" C)R
Science	"artificial intelligence in higher education" OR "AI-assisted learning	g"
	OR "educational chatbots" OR "AI assessment tools" OR "ChatGI	T
	research")	

b. **Screening:** A three-step screening process was applied to filter relevant studies, ensuring a rigorous selection of literature for analysis. First, duplicate studies were identified and removed, resulting in the elimination of 112 redundant records. Second, the remaining 523 studies were screened based on predefined inclusion and exclusion criteria (as outlined in Table 2), refining the dataset to include only the most relevant research. Finally, a full-text review was conducted, involving a thorough examination of titles, abstracts, and complete texts. This meticulous process led to the selection of 58 studies for the final analysis, ensuring that only high-quality and pertinent research contributions were included in the systematic and bibliometric review.

Table 2: Inclusion and Exclusion Criteria

Criterion	Inclusion	Exclusion	
Timeline	2023-2025	Before 2023	
Type of	Research articles	Review articles, books, book chapters,	
Document		conference proceedings	
Language	English	Non-English	

c. Eligibility: A final manual assessment of the filtered studies was conducted to ensure the relevance of selected papers. This included a qualitative evaluation of abstracts and main content to confirm that studies focused explicitly on ChatGPT application in higher education. 17 studies were finalized for the analysis.

Inclusion of Articles and Thematic Analysis: After selecting the final studies, a thematic analysis was conducted to extract key research themes, providing a structured understanding of the existing literature on ChatGPT in higher education. The analysis identified four main themes: the adoption and usage of ChatGPT in higher education, its impact on teaching and learning, challenges and ethical considerations, and future research directions. To enhance the validity of the thematic categorization, expert opinions were sought, ensuring that the identified themes were both clear and relevant to the research topic. This systematic approach helped in synthesizing key insights and trends, contributing to a comprehensive understanding of the role of ChatGPT in higher education.

Flow Diagram of the Study: The entire systematic review process followed a structured flow diagram adapted from Shaffril, Samah, Samsuddin, & Ali (2019):

- 1. **Identification:** Search and retrieve relevant studies (n=635).
- 2. **Screening:** Remove duplicates and filter studies based on criteria (n=523).
- 3. **Eligibility:** Conduct full-text reviews and exclude irrelevant studies (**n=35**).
- 4. **Inclusion:** Perform bibliometric and thematic analysis on final studies (**n=17**).

This methodology ensures a rigorous and systematic approach to reviewing ChatGPT research in higher education. This is clear from fig 2:

Study selection process for systematic review

Fig 2: RAMESES Aligned Flow Diagram

Findings

A total of 17 peer-reviewed studies were systematically reviewed to investigate the applications, challenges, and implications of ChatGPT in higher education. These studies represent a range of geographical contexts, including the United Kingdom, United States, Japan, Kosovo, China, Saudi Arabia, Turkey, Iran, and Pakistan, with several papers offering global or cross-cultural insights. In terms of research methodologies, seven studies employed qualitative approaches such as interviews, focus groups, and case studies; six utilized quantitative designs, including surveys and experimental research; and four adopted a mixed-methods approach that integrated both qualitative and quantitative data to provide more nuanced insights. This methodological distribution reflects the interdisciplinary and international scope of ChatGPT research in higher education, underscoring the growing global interest in understanding both the potential benefits and the emerging challenges of AI integration across academic settings.

Table 3: Classification of Research Articles on ChatGPT in Higher Education

Authors	Year	Country	Method	Focus Area	Key Findings
Ch'en et al.	2025	USA	Quantitative	GPT 4 generated	GPT 4 generated rationales
				answer rationales	for multiple-choice
				in medical	questions (MCQs) in
				education	medical education were
					coherent and aligned with
					clinical reasoning,
					indicating potential for AI-
					assisted assessment tools.
Kim et al.	2025	USA	Mixed	Faculty and	Faculty exhibited
			Methods	student	skepticism towards
				perceptions of	generative AI, while
				generative AI	students were more
					exploratory; institutional
					guidance is crucial for
					effective integration.
Jin et al.	2024	Australia	Quantitative	Generative AI	Developed and validated
				Literacy	the GLAT to measure
				Assessment	generative AI literacy
				(GLAT)	among students, providing
					a reliable tool for assessing
					AI competencies.

ISSN: 2278-4632

Vol-15, Issue-07, No.03, July: 2025

Juni Khyat (जूनी ख्यात) (UGC CARE Group I Listed Journal)

(UGC CARE G	noupi	Listea Jour	inai)	V U1-	15, Issue-07, No.05, July: 20.
Yang, Wang, & Lyu	2024	China	Quantitative	ChatGPT's educational	ChatGPT demonstrated proficiency in critical
				capabilities	thinking assessments,
				1	indicating its potential in
					educational settings.
Ali et al.	2024	Pakistan	Quantitative	MCQ generation	ChatGPT-generated MCQs
				in medical	were comparable in quality
				education	to those created by faculty,
					suggesting its utility in
					assessment design.
Jin & Suh	2024	South	Quantitative	ChatGPT in	ChatGPT's scoring of
		Korea		mathematics	mathematical assessments
				education	closely aligned with human
					grading, indicating
					potential for automated
Taloni et al.	2024	Italy	Quantitative	A L compared	evaluation.
Taioni et ai.	2024	Italy	Quantitative	AI-generated plagiarism and	GPT-4.0 produces low- plagiarism texts with high
				detection evasion	AI-detection scores; using
				detection evasion	humanizing tools
					significantly reduces AI-
					detection scores while
					maintaining readability.
Kanık	2024	Turkey	Quantitative	ChatGPT in	ChatGPT-generated
				assessment	questions were consistent
					with instructor-created
					ones, supporting its use in
					assessment development.
Susnjak	2023	New	Quantitative	ChatGPT	ChatGPT performed well
		Zealand		answering	on exams, raising concerns
				university-level	about cheating and
	2022	C1.		exam questions	academic integrity.
Juan et al.	2023	China	Quantitative	Use in writing and	Researchers are
				scientific	enthusiastic but raise
				communication	ethical concerns, stressing
					the need for usage guidelines and
					transparency.
Küchemann	2023	Germany	Quantitative	Physics task	ChatGPT-assisted task
et al.	2023	Germany	Quantitative	development	development matched
ot ai.				de veropinent	traditional methods in
					correctness but lacked
					contextual clarity.
Sila et al.	2023	Malaysia	Quantitative	Student	Students found ChatGPT
			_	perceptions	beneficial for learning but
					questioned the accuracy of
					information provided.
Mizumoto &	2023	Japan	Quantitative	AI-based grading	Lacks reliability in
Eguchi					evaluating higher-order
	_				thinking.
Aydin &	2022	Turkey	Quantitative	Plagiarism	AI-paraphrased abstracts
Karaarslan				detection	still detected as plagiarism.

ISSN: 2278-4632

Vol-15, Issue-07, No.03, July: 2025

<u> </u>					
Thunstrom &	2022	Sweden	Qualitative	AI authorship	GPT-3 generated an
Steingrimsson					academic article with
					minimal human input;
					raises authorship concerns.
Terwiesch	2023	USA	Quantitative	Exam design	Reduces time to design and
					test exams; improves
					efficiency but risks job
					displacement.
Kasneci et al.	2023	Germany	Qualitative	Educational	AI can support learning but
				integration	requires ethical,
					pedagogical consideration.

Discussion

This systematic review explored 17 studies focusing on the integration, applications, challenges, and perceptions of ChatGPT in higher education. The analysis revealed three main themes: Applications of ChatGPT in Higher Education, Challenges and Ethical Concerns, and Teacher and Student Perspectives. Each theme is discussed in detail below:

- 1. Applications of ChatGPT in Higher Education: The integration of ChatGPT into academic environments has shown diverse use cases, particularly in enhancing assessment practices, supporting academic writing, and aiding in computational learning.
 - a. Assessment Support and Feedback Automation: Several studies emphasize the value of ChatGPT in creating and evaluating educational assessments. For instance, Ali et al. (2024) and Kanık (2024) found that AI-generated multiple-choice questions were on par with those crafted by instructors, indicating ChatGPT's potential in exam and quiz preparation. Ch'en et al. (2025) highlighted how GPT-4 explanations for medical questions aligned with clinical logic, supporting its use in formative assessment tools. Furthermore, Jin & Suh (2024) demonstrated that ChatGPT's mathematical grading showed strong consistency with human scoring. Nevertheless, Mizumoto & Eguchi (2023) raised concerns about the AI's reliability when assessing higher-level cognitive responses, underscoring the importance of human oversight in complex evaluations.
 - **b.** Assistance in Academic Writing and Research Tasks: ChatGPT has been increasingly employed in academic writing processes. Juan et al. (2023) noted that researchers are open to using ChatGPT for drafting and revising scholarly texts, though concerns remain around authenticity and proper attribution. In a related study, Taloni et al. (2024) found that while GPT-4-generated texts-maintained originality in terms of plagiarism detection, these outputs could still evade AI detection software, presenting challenges for maintaining academic standards.
 - **c.** Computational and Technical Learning Support: Although not exclusive to computer science education, ChatGPT's utility in STEM fields has been highlighted. Jin & Suh (2024) observed that the AI performed effectively in mathematical assessment, which may extend to applications in programming and logic-based courses. This supports ChatGPT's growing role as a supplementary tool for problem-solving and error diagnosis in technical subjects.
- **2.** Challenges and Ethical Concerns: Despite its educational advantages, ChatGPT introduces significant concerns related to academic honesty, content validity, and ethical use.
 - **a. Risks to Academic Integrity:** A recurring issue in the reviewed literature involves the misuse of ChatGPT for dishonest academic practices. Susnjak (2023) warned that students might use the tool to generate responses for high-stakes assessments, undermining authentic evaluation. Similarly, Taloni et al. (2024) and Aydin & Karaarslan (2022) reported that AI-generated or AI-paraphrased content often escapes detection, even when produced through established plagiarism tools. These findings call for proactive institutional measures, such as clear academic policies and robust detection frameworks.
 - **b.** Concerns Regarding Accuracy and Quality: Inconsistencies in the accuracy and context of ChatGPT's responses are another point of concern. Küchemann et al. (2023) showed that

while AI could generate correct physics tasks, the explanations often lacked depth and clarity. Juan et al. (2023) also raised caution over AI-generated scientific communication, suggesting a need for thorough content review to avoid misinformation or superficial analysis.

- **3. Teacher and Student Perspectives:** The reviewed studies reflect a wide range of responses from faculty and students regarding ChatGPT's place in academic settings.
 - **a. Divergent Views Between Students and Faculty:** According to Kim et al. (2025), students generally approached ChatGPT with curiosity and optimism, particularly for learning and writing tasks, whereas faculty often expressed skepticism and concern. These differences highlight the need for institutional guidelines that balance innovation with integrity and pedagogical soundness.
 - **b. Student Experiences and Learning Enhancement:** Students' views of ChatGPT were largely positive. In Sila et al. (2023), learners appreciated the tool's support in simplifying content and aiding study efforts. However, concerns over the factual correctness of AI responses persisted, echoing the findings in Juan et al. (2023) and Küchemann et al. (2023).
 - **c. Instructor Considerations and Classroom Implications:** Faculty perspectives, as explored in Kasneci et al. (2023), acknowledge the value of AI in supporting student learning but emphasize the importance of ethical application and pedagogical alignment. Concerns include a possible reduction in students' critical thinking abilities and the potential erosion of academic standards, particularly if AI tools are used without proper guidance or moderation (Mizumoto & Eguchi, 2023; Kim et al., 2025).

Table 4: Summary Table of Systematic Review Findings

Category	Key Findings	Supporting Studies
Adaptive Learning and	Enhances learning motivation and	Sila et al. (2023), Kasneci et al.
Engagement	engagement through AI-generated	(2023)
	interactions	
AI-Supported	Facilitates efficient feedback and	Ch'en et al. (2025), Jin & Suh
Assessment Practices	evaluation; lacks depth in higher-	(2024), Mizumoto & Eguchi
	order tasks	(2023)
Writing and	Assists in structuring academic	Juan et al. (2023), Taloni et al.
Communication	writing; originality and depth are	(2024)
Support	concerns	
Academic Integrity and	Raises risks of cheating, plagiarism,	Susnjak (2023), Taloni et al.
Misconduct	and evasion of detection tools	(2024), Aydin & Karaarslan
		(2022)
Content Accuracy and	Instances of factually incorrect or	Küchemann et al. (2023), Juan
Reliability	unclear AI outputs	et al. (2023)
Cultural and	Demonstrates Western-centric or	Kasneci et al. (2023), Juan et al.
Contextual Bias	biased perspectives in some	(2023)
	educational outputs	
Faculty Perceptions	Faculty express concern over control,	Kim et al. (2025), Kasneci et al.
and Readiness	ethics, and AI integration policies	(2023)
Student Perceptions	Students are generally positive but	Kim et al. (2025), Sila et al.
and Dependency	may become over-reliant on AI tools	(2023)

This systematic review of 17 peer-reviewed studies highlights ChatGPT's emerging role as a valuable tool in higher education, particularly in areas such as student engagement, assessment development, academic writing support, and computational learning. The findings demonstrate that ChatGPT can enhance learning experiences through immediate feedback, task automation, and content generation. However, the review also reveals significant concerns, including risks related to academic misconduct, the reliability of AI-generated content, contextual biases, and the need for responsible use.

To harness the benefits of ChatGPT while addressing its limitations, higher education institutions should prioritize the development of AI literacy among both students and educators. Establishing clear

policies on ethical AI usage and integrating human oversight in AI-assisted tasks especially in assessment and academic content creation are critical. These measures will support a balanced, transparent, and pedagogically sound integration of ChatGPT into academic environments, ensuring it functions as a complementary tool rather than a substitute for critical thinking and scholarly engagement.

Key Findings

- 1. Research on ChatGPT in higher education spans multiple countries including the UK, USA, Japan, Kosovo, China, Saudi Arabia, Turkey, Iran, and Pakistan, highlighting global interest and application.
- 2. Studies employ diverse research designs, with qualitative (interviews, case studies), quantitative (surveys, experiments), and mixed methods approaches contributing to a comprehensive understanding.
- 3. ChatGPT has been effectively utilized in higher education for tasks such as personalized instruction, academic writing assistance, automated assessment, and programming support. These applications have contributed to improved student engagement, comprehension, and task efficiency [48, 49, 9, 50].
- 4. Despite its educational advantages, ChatGPT poses risks related to academic misconduct, including plagiarism and cheating, which has led institutions to implement detection tools and reconsider assessment strategies [51, 52, 53].
- 5. Several studies have reported concerns about the accuracy and reliability of AI-generated content, including instances of vague reasoning, incorrect information, and cultural bias particularly Western-centric framing highlighting the need for robust ethical oversight and culturally sensitive AI training [54, 55, 9].
- 6. Perspectives on ChatGPT's integration vary; while students generally find it beneficial for learning and academic support, educators stress the importance of AI literacy, ethical use, and maintaining human oversight to ensure critical thinking and academic integrity [47, 9].

Future Directions and Implications

As ChatGPT becomes more prevalent in higher education, future research should aim at establishing ethical and sustainable ways to integrate this technology effectively. A significant focus must be on the evolving role of educators, who will need to transition from traditional teaching to mentoring and supporting students' critical thinking as AI handles more routine tasks [9, 47]. Collaboration between educators, AI developers, and policymakers is essential to create fair and inclusive AI guidelines that address concerns like bias and misuse, while ensuring equitable access for all students [56, 54].

Institutions should also invest in comprehensive AI literacy programs to equip both faculty and students with the necessary skills to use AI tools wisely and critically [47, 9]. Additionally, long-term research using diverse methods is needed to evaluate how AI influences learning outcomes, cognitive skills, and student well-being over time [57, 50]. A carefully balanced approach combining ethical frameworks, ongoing training, and continuous impact assessment will be key to integrating ChatGPT in ways that enrich education without compromising academic integrity.

Conclusion

This review of 17 studies highlights ChatGPT's expanding role across various higher education activities, including personalized learning, automated feedback, academic writing support, and coding assistance [48, 49, 9]. The evidence points to improvements in student engagement and learning efficiency driven by these AI applications. However, challenges remain, especially regarding plagiarism, accuracy, and embedded biases in AI outputs [51, 52, 55]. These issues emphasize the importance of developing clear ethical guidelines, employing AI-detection tools, and maintaining human oversight in assessment processes. Going forward, higher education institutions should aim for a balanced integration of AI that supports, but does not replace, educators' expertise. This requires fostering AI literacy, implementing hybrid learning models, and conducting ongoing evaluations of

AI's educational effects. Such efforts will be vital to leveraging ChatGPT's benefits while safeguarding the core values of academic rigor and fairness.

References

- 1. Dwivedi, Y. K., Pandey, N., Currie, W., & Micu, A. (2024). Leveraging ChatGPT and other generative artificial intelligence (AI)-based applications in the hospitality and tourism industry: practices, challenges and research agenda. *International Journal of Contemporary Hospitality Management*, 36(1), 1–12.
- 2. Stahl, B. C., & Eke, D. (2024). The ethics of ChatGPT Exploring the ethical issues of an emerging technology. *International Journal of Information Management*, 74.
- 3. Williams, N., Ivanov, S., & Buhalis, D. (2023). Algorithmic Ghost in the Research Shell: Large Language Models and Academic Knowledge Creation in Management Research. *ArXiv.Org*, 1–23.
- 4. Bauer, P., Kolb, C., & Bastian, J. (2020). Mobile learning in higher education. In *Proceedings of the 16th International Conference Mobile Learning 2020, ML 2020* (pp. 97–101). IADIS.
- 5. Halaweh, M. (2023). ChatGPT in education: Strategies for responsible implementation. *Contemporary Educational Technology, 15*(2).
- 6. Gill, S. S., Xu, M., Patros, P., Wu, H., Kaur, R., Kaur, K., & Buyya, R. (2024). Transformative effects of ChatGPT on modern education: Emerging Era of AI Chatbots. *Internet of Things and Cyber-Physical Systems*, *4*, 19–23.
- 7. Kostka, I., & Toncelli, R. (2023). Exploring Applications of ChatGPT to English Language Teaching: Opportunities, Challenges, and Recommendations. *TESL-EJ*, *27*(3).
- 8. Dwivedi, D. N., Mahanty, G., & Dwivedi, V. (2025). ChatGPT and AI in government: Pioneering real-time data-driven strategies. In *Real-Time Data Decisions With AI and ChatGPT Techniques* (pp. 47-68). IGI Global.
- 9. Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., & Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. *Learning and Individual Differences*.
- 10. Lai, C. Y., Cheung, K. Y., & Chan, C. S. (2023). Exploring the role of intrinsic motivation in ChatGPT adoption to support active learning: An extension of the technology acceptance model. *Computers and Education: Artificial Intelligence*, 5.
- 11. Das, S. R. (2024). Perceptions of Higher Education Students towards ChatGPT Usage. *International Journal of Technology in Education*, 7(1), 86–106.
- 12. Dempere, J., Modugu, K., Hesham, A., & Ramasamy, L. K. (2023). The impact of ChatGPT on higher education. *Frontiers in Education*.
- 13. Fergus, S., Botha, M., & Ostovar, M. (2023). Evaluating Academic Answers Generated Using ChatGPT. *Journal of Chemical Education*, 100, 28.
- 14. Firat, M. (2023). What ChatGPT means for universities: Perceptions of scholars and students. *Journal of Applied Learning and Teaching*, 6(1), 57–63.
- 15. Adeshola, I., & Adepoju, A. P. (2024). The opportunities and challenges of ChatGPT in education. *Interactive Learning Environments*, 32(10), 6159–6172.
- 16. Dai, Y., Lai, S., Lim, C. P., & Liu, A. (2023). ChatGPT and its impact on research supervision: Insights from Australian postgraduate research students. *Australasian Journal of Educational Technology*, 39(4), 74–88.
- 17. Rahman, M., Terano, H. J. R., Rahman, N., Salamzadeh, A., & Rahaman, S. (2023). ChatGPT and Academic Research: A Review and Recommendations Based on Practical Examples. *Journal of Education, Management and Development Studies*, *3*(1), 1–12.
- 18. Rawas, S. (2024). ChatGPT: Empowering lifelong learning in the digital age of higher education. *Education and Information Technologies*, 29(6), 6895–6908.

- 19. Shanto, S. S., Ahmed, Z., & Jony, A. I. (2024). Enriching Learning Process with Generative AI: A Proposed Framework to Cultivate Critical Thinking in Higher Education using Chat GPT. *Journal of Propulsion Technology*, 45(1), 3019–3029.
- 20. Holmes, G., Tang, B., Gupta, S., Venkatesh, S., Christensen, H., & Whitton, A. (2025). Applications of Large Language Models in the Field of Suicide Prevention: Scoping Review. *Journal of Medical Internet Research*, 27, e63126.
- 21. Afolabi, A., & Jimoh, F. O. (2024). Artificial intelligence for publishing: The impact of ChatGPT on book publishing education in Nigeria. *BIJOTE-BICHI Journal of Technology Education*, 7(1), 64–74.
- 22. Sallam, M. (2023). ChatGPT Utility in Healthcare Education, Research, and Practice: Systematic Review on the Promising Perspectives and Valid Concerns. *Healthcare (Switzerland)*.
- 23. Zhang, P., & Tur, G. (2024). A systematic review of ChatGPT use in K-12 education. *European Journal of Education*, 59(2), e12599.
- 24. Koubaa, A. (2023). GPT-4 vs. GPT-3.5: A Concise Showdown. TechRxiv, 0-5.
- 25. Dwivedi, D. N., Mahanty, G., & Dwivedi, V. (2025). ChatGPT and AI in government: Pioneering real-time data-driven strategies. In *Real-Time Data Decisions With AI and ChatGPT Techniques* (pp. 47–68). IGI Global.
- 26. Ch'en, P. Y., et al. (2025). GPT-4 generated answer rationales to multiple choice assessment questions in undergraduate medical education. *BMC Medical Education*, 25(1), 333.
- 27. Sharma, P., Jyotiyana, M., & Kumar, A. V. (Eds.). (2024). *Applications, challenges, and the future of ChatGPT*. IGI Global.
- 28. Zhai, X. (2022). ChatGPT: Artificial intelligence for education. Supporting Instructional Decision Making: The Potential of An Automatically Scored Three-Dimensional Assessment System, 1–18.
- 29. Michel-Villarreal, R., et al. (2023). Challenges and Opportunities of Generative AI for Higher Education as Explained by ChatGPT. *Education Sciences*, 13(9).
- 30. Lo, C. K., Hew, K. F., & Jong, M. S. Y. (2024). The influence of ChatGPT on student engagement: A systematic review and future research agenda. *Computers & Education*, 105100.
- 31. Hwang, G. J., Xie, H., Wah, B. W., & Gašević, D. (2020). Vision, challenges, roles and research issues of artificial intelligence in education. *Computers & Education: Artificial Intelligence*, 1, 100001.
- 32. Castillo-Martínez, I. M., et al. (2023). Towards the development of complex thinking in university students. *Computers and Education: Artificial Intelligence, 5*.
- 33. Al-Amrani, N. S., & Al-Ghaithi, A. (2023). Enhancing blended learning quality. *Language Teaching Research Quarterly*, 34, 63–81.
- 34. Cheung, B. H. H., et al. (2023). ChatGPT versus human in generating medical graduate exam multiple choice questions. *PloS One*, *18*(8), e0290691.
- 35. Smith, A., & Liebrenz, M. (2025). Artificial intelligence and emerging digital technologies in psychiatry. *International Review of Psychiatry*, 1–2.
- 36. Afolabi, A., Jimoh, F. O., & others. (2023). Artificial intelligence in education: Ethical challenges. *Education Sciences*, 13(2), 401–412.
- 37. Smith, A., & Liebrenz, M. (2025). Artificial intelligence and emerging digital technologies in psychiatry. *International Review of Psychiatry*, 1–2.
- 38. Ogalo, E. O., & Mtenzi, F. (2025). Academic Integrity and Ethics in Higher Education in Kenya. In *Artificial Intelligence, Digital Learning, and Leadership: Redefining Higher Education* (pp. 1–36). IGI Global.
- 39. Nguyen, J., & Pepping, C. A. (2023). The application of ChatGPT in healthcare progress notes. *Clinical and Translational Medicine*, 13(7), e1324.

- ISSN: 2278-4632 Vol-15, Issue-07, No.03, July: 2025
- 40. Bender, E. M., et al. (2021). Dangers of stochastic parrots: Can language models be too big?. FAccT '21: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 610–623.
- 41. Kwong, A. T. M., Omar, S. I., & Aliah, M. N. (2024). Ethical implications of AI-powered personalization. In *Impact of AI and tech-driven solutions in hospitality and tourism* (pp. 103–122). IGI Global.
- 42. Shin, D., & Lee, J. H. (2023). Can ChatGPT make reading comprehension items on par with human experts?. *Language Learning & Technology*, 27(3), 27–40.
- 43. Garcia, M. B. (2025). ChatGPT as an Academic Writing Tool. *International Journal of Human–Computer Interaction*, 1–15.
- 44. Slimi, Z. (2023). Academic writing in the age of AI. *Arab World English Journal (AWEJ)*, 14(1), 143–162.
- 45. Moher, D. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses. *PLoS Medicine*, *6*(7), e1000097.
- 46. Mizumoto, A., & Eguchi, M. (2023). Using an AI language model for automated essay scoring. *Research Methods in Applied Linguistics*, 2(2), 100050.
- 47. Kim, J., et al. (2025). Examining Faculty and Student Perceptions of Generative AI. *Innovative Higher Education*, 1–33.
- 48. Ali, F. A., et al. (2024). The Chat GPT Develops Multiple Choice Questions. *Pakistan Journal Of Neurological Surgery*, 28(1), 142–149.
- 49. Jin, H., & Suh, B. (2024). Research on a statistics education program. *The Mathematical Education*, 63(2), 209–231.
- 50. Sila, C., et al. (2023). Exploring students' perception of using ChatGPT. *International Journal of Academic Research in Business and Social Sciences*, 13(12), 4044–4054.
- 51. Susnjak, T., & McIntosh, T. R. (2024). ChatGPT: The end of online exam integrity?. *Education Sciences*, 14(6), 656.
- 52. Taloni, A., et al. (2024). Evaluating plagiarism and AI detection scores of ChatGPT. *Eye*, 38(2), 397–400.
- 53. Aydın, Ö., & Karaarslan, E. (2023). Is ChatGPT leading generative AI?. *Academic Platform Journal of Engineering and Smart Systems*, 11(3), 118–134.
- 54. Juan, W., et al. (2023). Integrating ChatGPT into English Language Teaching. *International Journal of Academic Research in Business and Social Sciences*, 13(12).
- 55. Küchemann, S., et al. (2023). Can ChatGPT support physics task development?. *Physical Review Physics Education Research*, 19(2).
- 56. Qadir, J. (2023). Democratizing AI education in the global south. *Communications of the ACM*, 66(4), 29–32.
- 57. Jin, Y., et al. (2024). GLAT: The Generative AI Literacy Assessment Test. *arXiv preprint arXiv:2411.00283*.