
................... Page | 260 Copyright @ 2020 Authors

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

AMD's OPTERON processor's MEMORY SUBSYSTEM AND CACHE HIERHIERARCHY

 Mr.Sakti Charan Panda
1
*, Ms.Banashree Dash

2

1
*Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR
2
Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

sakticharan@thenalanda.com* banashree@thenalanda.com

...

...........................

THE 12-CORE AMD OPTERON PROCESSOR, CODE-NAMED ‘‘MAGNY COURS,’’

COMBINES ADVANCES IN SILICON, PACKAGING, INTERCONNECT, CACHE

COHERENCE PROTOCOL, AND SERVER ARCHITECTURE TO INCREASE THE

COMPUTE DENSITY OF HIGH-VOLUME COMMODITY 2P/4P BLADE SERVERS

WHILE OPERATING WITHIN THE SAME POWER ENVELOPE AS EARLIER-

GENERATION AMD OPTERON PROCESSORS. A KEY ENABLING FEATURE, THE

PROBE FILTER, REDUCES BOTH THE BANDWIDTH OVERHEAD OF TRADITIONAL

BROADCAST-BASED COHERENCE AND MEMORY LATENCY.

Recent trends point to high and growing demand for increased compute den-
sity in large-scale data centers. Many popular server workloads exhibit abundant process- and thread-

level parallelism, so benefit di- rectly from additional cores. One approach to exploiting thread-level
parallelism is to in- tegrate multiple simple, in-order cores, each with multithreading support. Such
an approach has achieved high batch through- put on some commercial workloads, but has

limitations when response time (latency), distribution of response times (quality of service, or QoS),
and user experience are a concern.

1,2
 Examples of highly threaded applications requiring both high

throughput and bounded latency include real-time trad- ing, server-hosted game play, interactive sim-

ulations, and Web search.
Despite focused research efforts to sim- plify parallel programming,

3
 most server applications

continue to be single-threaded and latency sensitive, which favors the use of high-performance
cores. In fact, a com- mon use of chip multiprocessor (CMP) serv- ers is simply running multiple

independent instances of single-threaded applications in multiprogrammed mode. In addition, for
workloads with low parallelism, the highest performance will likely be achieved by a CMP built
from more complex cores capable of exploiting instruction-level parallelism from the small number

of available software threads. Similarly, many high-performance computing applications that
operate on large data sets in main memory and use soft- ware pipelining to hide memory latency
might run best with moderate numbers of high-performance cores.

The AMD Opteron processor has hard- ware support for virtualization.
4
 It lets multi- ple guest

operating systems run on a single system, fully protected from the effects of other guest operating
systems, each running

its own set of application workloads. A com- mon usage scenario is to dedicate one core

per guest operating system to provide hard- ware context (thread)-based QoS. Data
centers are consolidating legacy single- application servers onto high-core-count dual-

...

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

Page | 261 Copyright @ 2020 Authors

RAM
RAM

RAM
RAM

and quad-processor (2p and 4P) blade and rack servers—the dominant seg- ment of the
server market. By doubling com- pute density, ‘‘Magny Cours’’ doubles the number of
guest operating systems that can be run per server in this mode. By using larger servers

in place of a pool of smaller servers (say, one 4P blade versus four 1P blades), the
operating system or hypervisor can flexibly allocate memory and I/O resour- ces across
applications and guest operating systems as needed and on demand.

Efficient power management is another first-order consideration in data centers since

power budget determines both the data center’s maximum scale and its oper- ating cost.
Benchmarks such as SPEC- Power2008 measure power consumption and performance
at different hardware uti- lizations. Such benchmarks reward designs that provide more

performance within the same power envelope and conserve power when idle. The
consolidation of multiple single-application servers with low hardware utilization levels
onto high-core-count blade servers using virtualization results in signifi- cant power

savings in the data center.

Processor overview

The basic building block in ‘‘Magny Cours’’ is a silicon design, a node that inte-

grates six x86-64 cores, a shared 6-Mbyte level-3 (L3) cache, four HyperTransport3
ports, and two double data rate 3 (DDR3) memory channels (see Figure 1). We built
the node using 45-nanometer silicon on in- sulator (SOI) process technology.

‘‘Magny Cours’’ die
Each ‘‘Magny Cours’’ processor core is an aggressive out-of-order, three-way superscalar

processor. It can fetch and decode up to three x86-64 instructions each cycle from the
instruction cache. It turns variable-length x86-64 instructions into fixed-length macro-

operations (mops) and dispatches them to two independent schedulers—one for integer

and one for floating-point and multimedia operations. These

schedulers can dispatch up to nine mops to the following execution
resources:

● three integer pipelines, each containing an integer-execution unit

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5

512-Kbyte 512-Kbyte 512-Kbyte 512-Kbyte 512-Kbyte 512-Kbyte
L2 cache L2 cache L2 cache L2 cache L2 cache L2 cache

System request interface (SRI)

L3 tag L3 data array

(6 Mbytes) Directory
storage

Crossbar

Memory
contoller

MCT/DCT

Probe filter/

directory

DRAM DRAM
Four HyperTransport3 ports

D
D

D
D

Figure 1. ‘‘Magny Cours’’ silicon block diagram. The node integrates six

x86-64 cores, a shared L3, two DDR3 memory channels and four HT3

ports.

................... Page | 262 Copyright @ 2020 Authors

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

and an address-generation unit; and
● three floating-point and multimedia pipelines.

The schedulers also dispatch load-and- store operations to the load/store unit, which can
perform two loads or stores each cycle. The processor core can reorder as many as 72 mops.
The core has separate in- struction and data caches, each 64 Kbytes in size and backed by a large

on-chip L2 cache, which is 512 Kbytes. All caches throughout the hierarchy (including the L3
cache) have 64-byte lines. The L1 caches are two-way as- sociative and have a load-to-use
latency of three clock cycles; the L2 cache is 16-way

HOT CHIPS

associative with a best-case load-to-use la- tency of 12 clock cycles. As in many prior-

generation AMD processor cores, the L1 and L2 caches use an exclusive layout—that is, the L2
cache is a victim cache for the L1 instruction and data caches. Fills from outer cache or
DRAM layers (system fills) go directly into the appropriate L1 cache and evict any existing

L1 entry, which moves into the L2 cache. System fills typi- cally are not placed into the L2
cache di- rectly. Similarly, most common-case CPU core L2 cache hits are invalidated from the
L2 cache and placed into the requesting L1 cache.

5,6

The shared L3 design plays two distinct roles, exploiting the fact that the L3 cache and

memory controller are colocated on the same die:

● a traditional cache associated with the processor; and
● storage for a cache directory (probe fil- ter), implemented in fast SRAM, asso- ciated with the

memory controller.

Multichip module (MCM)

package
x16 cHT3 port

DDR3 channels

x8 cHT3 port

x16 ncHT3 port

Figure 2. Logical view of the G34 multichip module package. The MCM

package has 12 cores, four HyperTransport ports, a 12-Mbyte L3 cache,

and four memory channels. Each die has six cores, four HyperTransport

ports, a 6-Mbyte L3 cache, and two memory channels.

cHT3: Coherent HT3

ncHT3: Noncoherent HT3

...

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

Page | 263 Copyright @ 2020 Authors

×

×

×
×

×

×

×

× ×

× ×

Most silicon nodes will likely be packaged as uniprocessors for desktop and

workstations. As such, we did not want to waste die area on a dedicated on-chip probe filter,
which is useful only in multi- processor configurations. Our implementa- tion allows the probe

filter to be enabled in a multiprocessor configuration or disabled in a uniprocessor desktop or
workstation configuration.

The probe filter is also known as Hyper- Transport Assist (HT Assist) at the platform level.

This is a reference to one benefit of the probe filter, which is to conserve system bandwidth; a
second benefit is to reduce memory latency.

Multichip module package
The processor packages two dies in a tightly coupled multichip module (MCM)

configuration to yield a 12-core processor architecture. The processor interfaces to four DDR3
channels and four HT3 tech- nology ports, as Figure 2 shows. The pack- age is a 42.5 60-
mm organic land grid array (LGA) and has 1,944 pins—735 more than the earlier-
generation AMD Opteron L1SP 1,207-pin package. This new socket is known as G34

(Generation 3, four memory channels). It has 1,132 sig- nal I/O, 341 power, and 471 ground
pins organized as a 57 40 array of contacts on a 1-mm pitch.

The HT3 ports are ungangable since each 16 HT3 port can operate as two in- dependent

8 HT3 ports. This allows us to build highly optimized 2P and 4P blade server topologies by
configuring a node as a router with four to eight ports in the network. If pins had not been a
con- straint, we would have brought out six HT3 ports on the package—three from each

node—to allow for total platform- level flexibility. However, pin constraints imposed a limit of
four HT3 ports on the package, as Figure 2 shows. An additional design constraint was the
requirement that a single high-bandwidth device, such as a GPU, have access to the full 16
non- coherent HT3 (ncHT3) I/O bandwidth. A single wide ncHT3 link connects to the lower

node. Thus, the MCM topology is asymmetric with respect to ncHT3 but symmetric with
respect to coherent HT3 (cHT3). The lower node has four wide

16 HT3 ports, which we allocate as follows:

● one ×16 link for I/O,
● one 16 plus one 8 HT3 link to connect to three other sockets in the 4P topology,

and
● one 16 plus one 8 HT3 link to con- nect to the other node in the package.

We balance traffic across the pair of on- package HT3 links by routing all ordered

traffic (such as I/O direct memory access [DMA] read and write) on the primary 16
HT3 link, and all unordered traffic (such as cache probes and responses) across

the least recently used of the link pair.

2P and 4P blade architectures
Network diameter and Xfire (crossfire) bandwidth are two useful metrics for evaluat- ing and

comparing topologies. Network di- ameter is the maximum number of hops to traverse between any

pair of nodes in the sys- tem. Xfire bandwidth is the maximum coherent memory-read bandwidth in
the system when each node accesses its own memory and that of every other node in a round-robin
fashion, assuming that the HT3 links are the only limiting factor. The Xfire bandwidth metric
is superior to the network-oriented bisection bandwidth metric

7
 because it measures useful bandwidth

(that is, data bandwidth) and captures the interaction of topology, routing tables, and protocol

................... Page | 264 Copyright @ 2020 Authors

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

×

×

×

×

× ×

overhead.
Figure 3a illustrates the recommended 2P blade topology. It has a diameter of 1, or minimum,

latency, a key benefit for com- mercial workloads (hence the name 2P Max Perf). Assuming

uniform distribution of traffic (Xfire), the 8 diagonal links deter- mine the maximum system
bandwidth. Using the two horizontal 16 links reduces the likelihood of hot spotting. We could dis-
able the on-package 8 HT3 link in this configuration to conserve power without ad- versely
affecting either Xfire bandwidth or average diameter.

Figure 3b shows the recommended 4P to- pology in platforms with four HT3 I/O channels (4P
Max I/O). It consists of two fully connected planes, (P2, P3, P6, P7)

and (P0, P1, P4, P5), interconnected by the on-package pair (16 and 8) of HT3 links. This

topology has a diameter of 2 and an average diameter of 1.25. For a uni- form traffic
distribution memory access pat- tern such as Xfire, half of the traffic from each node traverses

the on-package Hyper- Transport link pair and 1/8 of the traffic routes over the 8
HyperTransport links in each fully connected plane.

Figure 3c shows an alternative 4P topol- ogy with two HT3 I/O channels (4P Max Perf).

This topology trades I/O connectivity for a more fully connected topology, achiev- ing a reduced
average diameter of 1.19. This topology is less susceptible to hot spotting and has lower average
latency because of the additional links.

Figure 3d shows yet another 4P topology built with two identical 2P blades. This to- pology

provides a pay-as-you-go upgrade path for customers wanting to start small (2P) and increase the
number of processors, memory capacity, and memory bandwidth by adding a second 2P blade.
Table 1 shows the Xfire bandwidth and diameter metrics for the four topologies.

Configurable L3 cache
The 6-Mbyte L3 cache is a victim cache, installing lines that are evicted from any of the core

L2 caches. Each of its four subcaches contains tag and data macros to form a 1- or 2-Mbyte 16-way

associative cache. We built the L3 cache from two 1-Mbyte subcaches and two 2-Mbyte
subcaches. We chose this configuration purely for silicon area consid- erations. The architecture
itself allows one, two, or four subcaches, and each can be 1 or 2 Mbytes. This allows flexibility
in system- on-chip (SoC) layouts and lets us use differ- ent subcache building blocks in

different SoCs with reduced effort. For example, some prior-generation processors used two 1-
Mbyte subcaches; other processors might use four 2-Mbyte subcaches, with little im- pact to the
overall microarchitecture. We can apply cache probe operations to all sub- caches in parallel, or

restrict them to a specific subset based on address. The L3 cache allo- cates lines to an available
subcache, account- ing for any address-based restrictions and giving preference to any subcache
containing

HOT CHIPS

...

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

Page | 265 Copyright @ 2020 Authors

P0
x16

P2 P2
x8

P6 P2
x8

P6 P2
x8

P6

x8

x16+x8 P3 P7 P3 P7 P3 P7

P1 P3 P0 P4 P0 P4 P0 P4

I/O

x16

I/O

x16+x8 x16+x8 x16+x8

I/O
P1 P5 P1 P5

I/O
P1 P5

I/O

x16

I/O I/O

x16

I/O I/O

x16

I/O

(a) (b) (c) (d)

Figure 3. Dual processor (2P) blade and quad processor (4P) rack topologies: 2P Max Perf (a), 4P Max I/O (b), 4P Max

Perf (c), and 4P Modular 2þ2 (d).

I/O I/O

 Bandwid
th

DRAM

 Bandwid

th

Bandwid

th

increase bandwidt

h

Avera

ge

using using the using

the

using

DDR

 Diame

ter

diamet

er

broadcas

t

probe

filter

probe 1333

Topology (hops) (hops) (Gbytes/s

ec)

(Gbytes/s

ec)

filter

(%)

(Gbytes/s

ec)

2P Max

Perf

1 0.75 76.5 125.9 64 85.2

4P Max

Perf

2 1.19 56.7 143.4 15

2

170.4

Max I/O 2 1.25 56.7 143.4 15

2

170.4

Modular

2+2

2 1.25 38.4 71.7 86 170.4

................... Page | 266 Copyright @ 2020 Authors

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

Table 1. Xfire bandwidth and diameter metrics for the topologies in Figure 3.

invalid entries in the indexed set. If no in- valid entries are present, a weighted round- robin
algorithm distributes allocations among the subcaches in proportion to their size. On a valid

replacement, the L3 cache chooses the subcache to victimize first (using weighted round-robin),
then applies a pseudo least recently used (LRU) algorithm within the 16-way associative subcache
for final victim selection.

The L3 cache supports a directed address- ing mode in which the L3 cache can be sliced based on
address. In this mode, both alloca- tions and probes are directed to half of the cache (a pair of
subcaches) based on a hash of the address bits. This reduces power and could reduce latency. Each

tag probe only ties up resources in part of the cache, letting the L3 cache controller issue more
speculative reads in parallel. However, some applications might be sensitive to the reduced
effectiveassociativity in this mode, so the benefit is workload dependent.

Architecting the L3 as a victim cache reduces overlap between the contents of the L3 and L2

caches, allowing more data to be cached. In addition, back invalidation of the L2 caches is not
required when L3 lines are victimized. The L3 cache can retain a line after providing a copy
to a requesting core when true sharing of a line is detected. The core that victimized a line is

stored in a field in the L3 tag entry for the line and is used to detect sharing patterns by the L3
cache controller. If the next read is from the same core that allocated the L3 line, the data is
deemed private and the L3 cache does not retain a copy. Instead, it passes responsibility for
the line back to the core by providing the line in E or M state and invalidating the line in the

L3 cache. Otherwise, if it is consistent with the core request type, the L3 cache will keep a
copy in anticipation of further sharing. This mecha- nism lets a core evict E and M state lines
to the L3 cache and later retrieve them in the same state if they are not shared.

Subcache optimization. The tags in the subcache are physically located near the L3 controller to
provide hit/miss results with minimum possible latency. The data array within the subcache is
divided into four regions, each providing 128 bits of data. Both the control signals to the data

regions and the read data return path are pipelined, causing round-trip latency to each succes- sive
region to increase by one clock. As a result, the subcache can provide four con- secutive 128-bit
data values even though the last value might be located a significant distance from the tags. This
provides flexi- bility in placing the data macros and facili- tates efficient floorplanning.

Latency optimization. The L3 cache archi- tecture dynamically optimizes both latency and

bandwidth. When the cache is lightly loaded, it operates in a latency-reducing mode in which a
processor-initiated tag probe assumes a hit and reserves the neces- sary data buses and buffers in
advance. This allows the read of the data macro to be overlapped with the tag probe, which
minimizes latency. However, when the request rate is high and the L3 cache does not contain

enough resources, the L3 cache controller sends the request to the tags as a query only, which will
determine the cache status without initiating a data transfer. If the line is not present in the cache,
it forwards the request to DRAM with minimal latency. Otherwise, it issues an L3 data read to

the subcache containing the line once the necessary resources are available.

Bandwidth. The L3 cache controller can issue one processor-initiated tag probe or tag update and

one probe-initiated tag probe or tag update per clock. Each sub- cache provides access ports to the
required two tags as well as two read data buses and one write data bus. A dedicated read buffer
holds the data from each subcache until it can be returned to the requesting core. Data from any

subcache can be returned to any core. One dedicated write buffer per core holds allocation data

...

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

Page | 267 Copyright @ 2020 Authors

until it can be written to the cache. Data from any core can store to any subcache. Each L3 data
bus can sustain a bandwidth of 16 bytes per clock. The required tag accesses limit the combined

L3 data read and write bandwidth to two 64-byte cache line accesses per clock.

Coherency. For requests that miss in the L3 cache, the memory controller is the ordering point
between requests from different cores. When data movement is to or from the L3 cache, the L3
controller must ensure that none of the coherency rules are violated. In particular, it must

ensure that there are no races between probes to a core and hit data being returned to the same
core, or be- tween probes to the L3 cache and victim data from the cores being allocated into the
L3 cache. To achieve this goal, the L3 controller performs collision detection of probes against
L3 cache data movements be- fore delivering the probes to the core. This is a low-latency

operation because it only probes the L3 queues; it performs the L3 cache probe after collision
detection and in parallel with the core-cache probe. If a conflict exists, the probe can be delayed
if the data movement is guaranteed to com- plete in a deadlock-free manner. Otherwise, the data

movement is delayed and the probe is ordered ahead of the processor operation. When this occurs,
the L3 controller applies the probe-state update to the L3 tags as well as conflicting L3
allocations, which have yet to update the tags. Dependency tracking ensures that these

conflicting operations are completed in the correct order to main- tain coherency.
With multiprogrammed workloads, if a program running on one core has poor caching

characteristics, it could negatively affect the cache performance of programs running on other
cores. This situation can be detected when a core exhibits a high in- stall rate and a low cache

hit rate, which indicates that it is not benefiting much from the L3 cache and is probably
pollut- ing the cache for other cores. To address

HOT CHIPS

this situation, the L3 controller implements the block aggressive neighbors replacement algorithm.
The BAN algorithm computes each core’s cache efficiency based on its al- location rate and L3
cache hit rate. It limits the allocations of those programs or cores determined to be getting little

benefit from the cache while causing significant pollution into the L3 cache. Rather than
promoting an allocated line to the most recently used (MRU) position, the BAN al- gorithm sets
the program lines to either the LRU position or half-way through the LRU stack (position 8). As

a result, a poorly behaving program cannot negatively affect the most frequently accessed lines
within the L3 cache.

Memory controller and DRAM interface
‘‘Magny Cours’’ continues the tradition of the AMD Opteron family with an on- die memory

controller, but adds DDR3 capability. The DRAM channels are config- ured for unganged

(independent, 72-bit versus combined 144-bit) operation for max- imum throughput and DRAM
efficiency. The memory controller supports full single- error correction and double-error detection
(SECDED) and x4 Chipkill. It does not sup- port ganged (144-bit) DRAM channel oper- ation

because the natural DDR3 burst length
(8) with a ganged channel leads to 128 bytes of data return, but the AMD Opteron cache line size is
64 bytes, leading to 64 bytes of superfluous data. It does not use DDR3 burst four-chop mode
to mitigate this because DRAM performance is significantly reduced in this mode. Maximum

capacity configurations support up to three dual- rank, two quad-rank, or two dual-rank plus one
quad-rank DDR3 device configurations per channel. At 1.5V, a maximum operating frequency of
RDDR3-1333 will be available, subject to platform design for lower capaci- ties (up to two dual-

................... Page | 268 Copyright @ 2020 Authors

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

Probe filter

lookup
Probe filter

lookup

Probes

RdBlk

request Response

RdBlk DRAM

request response

R
Req

Directed

probe

Cache

response

(a) (b) (c)

Figure 4. Cache coherence protocol examples: broadcast protocol (a), HT Assist with clean

data (b), and HT Assist with dirty data (c).

Owner
node

Request

node

Home

node

Request
node

Home

node

Home

node

rank registered dual in-line memory module [RDIMM] per channel). Maximum capacity
configurations have operating frequencies of either 800 or 1,066 megatransfers per second,

depending on platform routing and detailed DIMM characteristics. The memory interface sup-
ports 1.35V (DDR3L) operation, leading to lower speeds in some configurations.
The memory controller and DRAM in- terface have several notable features.

First, they offer memory-controller-based prefetch for CPU and I/O traffic, allowing prefetch

chaining with CPU core prefetchers. This includes adaptive throttling when the DRAM interface
is heavily used.

In addition, they provide adaptive pre- fetch of DRAM requests in parallel with local L3 tag

accesses to minimize latency for L3 misses to local DRAM along with L3 hit/miss
predictors. The L3 hit/miss predictors use a combination of per-page (4-Kbyte region) recent
L3 access behavior and per-core local L3 hit/miss ratio to guide prefetch decisions.

A third feature is overlapped DRAM ac- cess and directory lookup, which minimizes
DRAM latency when HT Assist is enabled. A directory hit to dirty (or potentially dirty) data
in another cache in the system will cancel a DRAM data response to the requesting processor,
which saves intercon- nect bandwidth. The memory controller issues probes as early as possible

to minimize indirection latency.
The memory controller and DRAM in- terface also offer optimized DRAM page

management and DRAM command bus uti- lization. Each memory channel has a dedi- cated

DRAM controller that supports timeout-based and predictive page closing utilizing DRAM
bank history. The DRAM controller allows aggressive reordering for high DRAM efficiency
with out-of-order scheduling of both command (precharge, activate, and so on) phase and data

(CAS) phase between multiple DRAM banks simultaneously.
Finally, the memory controller and DRAM interface can collect multiple DRAM write

transactions outside the DRAM schedulers until many writes are available to be handled in a
burst (write bursting) to avoid costly DRAM read-to-write and write-to-read bus turnarounds.

Cache coherence protocol

The cache coherence protocol is an im- portant aspect of CMP systems. Generally, designers

favor broadcast-based protocols when either overall protocol simplicity or la- tency for cache-to-
cache transfers is more

dBlk
uest

Request node

important than interconnection and probe bandwidth. Directory-based protocols can be

easier to scale up to larger systems,
7,8

 but they also can be difficult to implement and
verify. In addition, in many cases, the di- rectory is stored in DRAM at the home node,
which leads to relatively long indirec- tion latencies, more complex protocols, or complex
directory-caching mechanisms with performance policies defining which direc- tory

...

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

Page | 269 Copyright @ 2020 Authors

entries to cache.
HT Assist is a key innovation in ‘‘Magny Cours’’ and the AMD Opteron processor

code-named ‘‘Istanbul.’’ The HT Assist di- rectory protocol gains many of the key
scal- ability advantages of classic directories without using DRAM-based directories (for
example, by repurposing ECC bits), and also maintains low indirection latencies. It does
this by maintaining a cache directory, which fits naturally within the existing AMD

Opteron processor broadcast transac- tion flow.

Review of broadcast protocol
Figure 4a illustrates the broadcast coher- ence transaction flow used by earlier genera-

tions of AMD Opteron processors.
5

In the broadcast protocol, last-level cache misses go to the home node (where DRAM

for the requested cache line resides) and the memory controller determines the ordering for
each request for the same cache line. Once a request becomes active, the home node
broadcasts cache probe requests to all processors, and the memory controller ini- tiates a
DRAM access. All processors send probe responses directly to the requesting processor,

and the memory controller (DRAM) sends a separate response whenmemory data is
available. The requesting processor collects all responses, including cache data responses,
and determines which data should be used to satisfy the original re- quest. Once it receives

all responses, the requesting processor delivers data to the CPU core and sends a
transaction (not shown in the figure) to the home-node mem- ory controller indicating that
the cache line request is complete and another request for the same cache line can be

activated.

HyperTransport Assist directory protocol
HT Assist adds a cache directory. Each home node keeps track of which cache lines from its

memory are cached by other process- ors in the system. The directory includes all cached data in the
system. If a cache line is present in any cache, there must be an entry in the home node’s directory

to indicate that the line is cached within the system. If a directory is full or a mapping conflict
occurs, a previous directory entry must be replaced (causing a potential writeback, plus invalida-
tion of the previous entry’s data from all caches) to accommodate the new request.

HT Assist’s transaction flow is similar to the broadcast protocol. Initial requests travel to the

home node, where the memory con- troller orders and activates them. Once a re- quest is active,
instead of broadcasting probes, it begins a DRAM access and a probe filter lookup in
parallel to minimize DRAM latency. When the directory lookup is complete, the memory

controller generates a broadcast probe, a directed probe (a probe targeting a single processor), or no
probe, depending on directory state. The time to ac- cess the probe filter and generate a directed
probe is the indirection latency. The protocol

HOT CHIPS

................... Page | 270 Copyright @ 2020 Authors

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

× þ

guarantees that a directed probe never requires a DRAM response, so any DRAM response is
canceled. When no probe is gen- erated, the memory sends a data response with an indication that

this is the only re- sponse to expect and that the request can now be completed. Broadcast probes
follow a similar flow to the previous broadcast pro- tocol, except this generation’s protocol guar-
antees that data will be returned from the owner node. Figures 4b and 4c show a sim- plified

version of the transaction flow for cases in which no probes, and a single directed probe, are
required.
For most requests, the directory state is immediately updated after the initial direc- tory lookup

based on the request type and directory state. For some requests, such as a store to an S-state line in
the requestor’s cache, the request is always treated as a broadcast, and directory lookup and
update are postponed until after the request com- pletes. In all cases, only a single directory lookup
and update is required, and these are treated as an atomic read-modify-write action. Designing the

protocol in this fash- ion greatly simplified microarchitecture de- sign and reduced protocol
complexity.

The directory protocol must also enable alternate coherence behavior of the CPU- side caches

(L1, L2, and L3). Notably, exter- nal read probe requests must transition E-state cache lines to O-
state, return data to the requester, and send eviction notifica- tions of E-state cache lines to the
directory.

Directory storage
The design supports multiple directory sizes through a combination of per-way and per-subcache

mappings of L3 space assigned to the directory. However, in its production form, only a subset of
sizes and configura- tions are available for selection.

Because the directory storage is held in the fast L3 SRAM arrays, directory indirec- tion latency
is low and we can achieve suffi- cient bandwidth to the arrays to not limit per-node coherent
bandwidth. We used the existing L3 arrays in lieu of dedicated direc- tory storage to maximize

processor flexibility, for the discussed latency and bandwidth characteristics, and to avoid additional
pres- sure on the DRAM ECC coding. With

existing AMD Opteron cache line sizes, and continual pressure to improve error de- tection and

tolerance surrounding DRAM devices, we did not pursue an in-memory di- rectory strategy. Most
directory actions in- volve read-modify-write accesses that are implemented much more efficiently,

and with minimum port occupancy, in SRAM than in DRAM.
Our design’s 64-byte cache line holds 16 directory entries, with 4 bytes per entry organized as a

four-entry four-way set asso- ciative array (see Figure 5a). The tag field tracks normalized
addresses, which are computed by subtracting the home node’s DRAM base address (or, for

node- interleaved addressing, removes appropriate bits of the system’s physical address) before
storing the resulting address. Using the nor- malized address reduces the number of tag bits
required and lets us size the probe filter tag field based on the maximum DRAM per node, not the

total DRAM across all nodes in a system.
By default, the basic input/output system (BIOS) will allocate 1 Mbyte of the 6-Mbyte L3 cache

to directory storage. The directory holds 256k directory entries, which can cover 16 Mbytes of
cache. This results in a directory coverage ratio of 16 Mbytes/(0.5 Mbytes 6 cores 5-Mbyte L3),

or 2.0, which says there are at least twice as many di- rectory entries in a system as cached lines,
since a single directory entry can track multi- ple cached copies of a shared line.

Directory states and transitions

...

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

Page | 271 Copyright @ 2020 Authors

Earlier, we showed the behavior of the di- rectory protocol using some examples. Also important
are the protocol’s states and tran- sitions, including special consideration for the shared L3 cache

and CMP nature of each processor node.

Directory behavior. Figure 5b lists the direc- tory states. The directory supports the full MOESI
protocol from all previous AMD Opteron processors. It observes all requests, many of which lead
to state updates. To maintain the directory semantics discussed earlier, and to keep the directory

up to date, the directory protocol informs the di- rectory of any cache castouts of M, O, and

E state lines. Finally, each directory miss might find the directory index full of valid entries,
one of which must be evicted to make space for the new entry. We refer to this final case as

needing a downgrade probe. Such a probe causes a writeback (if dirty) and invalidates all
existing cached copies of the downgraded cache line.

Figure 6 shows some common transaction scenarios. The transactions in the figure have the

following semantics:

● Fetch—an instruction fetch request; in- stall in S state by default.
● Load—a data read request; install in E state by default.
● Store—a data store miss request (write- allocate); install in M state.

In each case, the ‘‘Directory hit’’ columns indicate that a request hits a pre-existing di- rectory

entry to the same cache line address. The ‘‘I,’’ ‘‘O,’’ ‘‘S,’’ ‘‘S1,’’ and ‘‘EM’’ col-
umns indicate the entry’s directory state, and the table entries indicate the type of probe generated,
if any. The ‘‘Directory miss’’ columns indicate scenarios in which the requested cache line has no

pre-existing directory entry, the line is uncached, and no probe is necessary (filtered). In the
direc- tory miss case, the directory states indicate the state of the replaced line and the corre-
sponding type of downgrade probe (broad- cast downgrade or directed downgrade).

Four ways

L3 cache

line (64 bytes) Four sets

Probe filter

entry (4 bytes)

(a)
EM, O, S, S1, I states

(b)

Figure 5. Probe filter entry format (a) and directory states (b), which shows

how probe filter entries map into the L3 cache line.

Entry 0 Entry 1 Entry 2 Entry 3

Entry 12 Entry 13 Entry 14 Entry 15

Tag State Owner

EM A copy of the cache line is present on a single node, recorded in

the owner field. The state of the line in the cache is not known at

the directory. It may be clean (Exclusive) or dirty (Modified or

Owned with all shared copies on the owner node).

O The cache line is cached on one node, the Owner node, and

possibly multiple Sharing nodes. The line is dirty and is written

back to memory when cast out of the node.

S The cache line may be present on multiple nodes and all copies

are clean (Shared).

S1 The cache line is clean and present on a single node, recorded

in the owner field.

I The line is uncached.

................... Page | 272 Copyright @ 2020 Authors

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

Although a downgrade probe does not block system activity for the demand re- quest that caused
it, minimizing down- grades to achieve high probe filtering rates and processor-side cache

perturbation is still important. Therefore, informing the directory on M, O, and E state castouts,
in combination with directory size and mapping, ensures that most directory miss requests find an
available invalid directory location. The protocol does not include notifications of S-state castouts.
Downgrade probes reclaim S-state lines in the directory. We omitted S-state evictions for several rea-

sons, due both to performance (a poten- tially large number of eviction messages) and various
microarchitecture-specific im- plementation complexities. Performance evaluation showed that S-
state eviction

...

.......

HOT CHIPS

notifications were not critical for achieving acceptable directory performance.
Because the directory is shared with the processor-side L3 cache, AMD Opteron pro- cessors with

HT Assist enabled must trade off directory size (minimizing downgrades) with processor-side L3

cache performance (elimi- nating last-level cache misses). We achieved an appropriate balance via
extensive modeling and hardware-based evaluations. This tradeoff is particularly noteworthy because the
direc- tory’s associativity is much lower (four-way) than the net associativity of all CPU-side

caches. As we noted earlier, a directory cover- age ratio of at least 2.0 provides significant leverage.
Additionally, the directory index mapping uses hashing for many common- case scenarios
considering the possible x86 page sizes (4 Kbyte, 2 Mbyte, and 1 Gbyte). In addition, interaction
with operating system/ Hypervisor page-coloring algorithms helps avoid pathological directory

mapping colli- sions in multiprogrammed scenarios. Finally, directory replacement policies attempt
to avoid victimizing lines that are cached in many CPUs to reduce CPU-side cache pertur- bation
resulting from directory downgrades.

CMP considerations. Our description of the protocol and states has not specifically men- tioned
interactions with the various levels of private (L1 and L2) and shared (L3) caches on each

processor node. The HT Assist di- rectory treats each set of CPU cores, private caches, and shared
L3 cache as a unit (node). All of the transaction flows and state transitions discussed previously
are faithful representations of the directory pro- tocol behavior for the AMD Opteron cache

hierarchy. The directory is never involved (that is, a message is never sent to the direc- tory) in any
internal cache transitions or movement of a cache line between layers in the cache hierarchy within
a processor node (for example, movement of a cache line from L3 to L1, or from L2 to L3).

Performance

We evaluated the HT Assist directory both in simulation and by making measure- ments on

preproduction silicon.
The simulation-based performance results presented here use AMD-internalperformance

models. The model used in this article has a detailed representation of the on-die northbridge (L3

cache, microarch- itecture, HT3 links, DRAM controllers/ devices, and so on), is designed to be
cycle- accurate at the northbridge level, and is cor- related against the register transfer level (RTL)
design presilicon. The model can use detailed, cycle-accurate, correlated-to- RTL CPU core
models (representing AMD’s most precise CPU-to-system model- ing environment) or abstract

No probe (filtered)

Directed probe

Directed invalidate

Broadcast invalidate

Effective

Ineffective

Figure 6. Probe filter transaction scenarios summarizing probe actions as a

function of memory access type and probe filter state.

B

DI

D

–

 Directory hit Directory miss

I O S S1 EM I O S S1 EM

Fetch – D – – D – B B DI DI

Load – D – – D – B B DI DI

Store – B B B DI – B B DI DI

...

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

Page | 273 Copyright @ 2020 Authors

×

× þ ×
× þ þ

CPU core mod- els when simulation efficiency is paramount. For practical reasons, we use the
abstract CPU core model. One model input is coher- ence transaction traces, taken from existing

AMD Opteron multiprocessor systems. These traces are essentially lists of L1 cache miss records
for fetches, loads, and stores issued from the cores in the system. Each trace record contains metadata
that specifies interthread ordering for accesses to shared data so that the simulator can enforce for
deterministic execution. The abstract core model consumes these traces when running a simulation.

The abstract core model includes a representation of core caches (L1 and L2), CPI, memory-
level parallelism, and core frequency. The simulator models the memory traffic from the abstract
core model cycle accurately within the northbridge model, using total execution time for a con- stant

set of references from each input trace on each CPU as the performance metric.
The hardware performance measurements used preproduction ‘‘Magny Cours’’ hard- ware in

AMD’s performance labs. The CPU and on-die northbridge operational fre- quencies and other

system parameters are rep- resentative of final shipping configurations.

Transaction scenario frequencies
Figure 7 shows the probe filter transaction scenario frequencies from early 4P hardware

measurements for SPECJBB2005. Most requests lead to no probe or to a directed probe;
therefore, the HT Assist directory eliminates a large amount of probe and re- sponse traffic.
If we attach a weight of 0 to filtered,
0.125 to directed (one probe in place of eight for broadcast), and 1 to broadcast, the coherence
protocol overhead with probe filter

is (72.2 percent 0) ([24.9 percent
1.6 percent] 0.125) (1.3 percent 1), or 4.6 percent of the broadcast coherence. Thus, the

protocol is more than 95 percent effective in reducing probe traffic.
On the other hand, the directory protocol requires that clean victims be sent to the home node whenever

E lines age out of the last-level cache (one clean victim in place of eight probes), which introduces

66 percent
0.125 (or 8.25 percent) additional traffic overhead corresponding to table entry
{Load, PF Miss, I}. So, the net effectiveness— or reduction in traffic associated with main- taining

cache coherence in this theoretical design—is greater than 87 percent.
This example shows that the traditional cache-hit ratio is not an appropriate measure of the probe

filter’s effectiveness (in this exam- ple, the directory-hit ratio is only 14.6 percent). Note that downgrades

occur in the back- ground and can be overlapped with new memory requests. Additionally, the
reduced L3 victim traffic offsets the modest band-

width overhead of downgrades.

NUMA software optimizations
Like previous generations of AMD Opteron processors, ‘‘Magny Cours’’ is a dis- tributed

shared memory machine that bene- fits from operating system/application tuning to optimize memory
allocation and process scheduling. Modern operating systems, such as Windows and Linux, are
aware of the un- derlying machine node topology via the Advanced Configuration and Power

Inter- face (ACPI) static resource affinity table/ system locality information table (SRAT/
SLIT) supplied in BIOS.

9
 These tables asso- ciate memory with nodes and provide a ma- trix to

assign a latency cost for accessing memory for all {source, destination} node pairs. The Linux

nonuniform memory archi- tecture (NUMA) library supports a com- mand line utility, numactl,
which defines the default memory allocation policy (local, interleaved, or user specified) for all

................... Page | 274 Copyright @ 2020 Authors

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

Figure 7. Probe filter transaction scenario frequencies for SPECJBB2005.

Each table entry is a percentage of all requests.

threads spawned by a process and specifies on which cores they should run. The shared li- brary
libnuma provides applications with an API to control the process policy for allocat- ing new or

existing memory and scheduling threads on sets of nodes.

 Probe filter hit Probe filter miss

I O S S1 E

M

I O S S1 E

M

Fetc

h

 1.

0

 0.1

Loa

d

 0.1 4.

0

 1.

5

66.

0

0.2 1.

0

 16.

0

Stor

e

 8.

0

1.2 0.

1

 0.8

 – No probe
(filtered)

72.2
%

Effectiv
e

 D Directed
probe

1.6%

 D
I

Directed
invalidate

24.9
%

 B Broadcast

invalidate

1.3% Ineffecti

ve

 100

%

Having the probe filter on ‘‘Magny Cours’’ reduces the observed latency of memory accesses
when probes and probe responses are the longest path. By signifi- cantly reducing local memory
latency, the probe filter amplifies the benefit of NUMA software optimizations.

Memory latency and bandwidth
Figure 8a shows preproduction hardware improvements in maximum main memory

bandwidth when running STREAM triad, and Figure 8b shows improvements in local and
one-hop memory latency in 2P and 4P (four-node and eight-node, respectively) sys- tem

configurations. Latency measurements are for DRAM page hits. Each measurement is relative to
HT Assist disabled for that plat- form (2P or 4P), and the 2P and 4P relative memory latencies

cannot be compared because they are not normalized to the same baseline. As these tests show,

enabling HT Assist significantly increases memory bandwidth and reduces memory latency.
Notably, the memory bandwidth and latency improve- ments are larger in 4P systems than in
2P systems, illustrating the greater benefit from HT Assist in these larger systems. As might be

...

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

Page | 275 Copyright @ 2020 Authors

expected, the improvement in local DRAM latency is larger than one-hop (and two-hop in
4P) latency. We therefore expect NUMA-optimized workloads with high processor-memory

affinity to benefit

..

...........................

HOT CHIPS

more from HT Assist, and that benefit will be greater in 4P systems.

Application benchmarks
Figure 9 shows early hardware measure- ments of the benefit of HT Assist for application-level

workloads. HT Assist bene- fits 4P systems more than 2P systems because of the larger relative
reduction in memory la- tency and bandwidth. Note that perfor- mance scaling from 2P to 4P

(not shown) is greater than 95 percent in these cases, illus- trating that HT Assist could enable superior
system scalability.

Figure 10 shows simulation-based studies of additional workloads with configurations similar

to the hardware measurements.
Although real-world results might vary, our simulations demonstrate that HT Assist improves

performance more dramatically in 4P configurations than in 2P, and that it benefits the

WebServing, Java Business, and Business workloads more significantly than the Database and
Virtualization work- loads. Detailed evaluation of the underlying performance data (not shown
here) indicates that Java workloads have good processor- memory affinity and significant need
for memory bandwidth, making them a good fit for HT Assist. The WebServing and Busi- ness

workloads benefit primarily from the additional achieved memory and intercon- nection
bandwidth, and less from the signif- icant improvement in local memory latency because they
have less processor-memory affinity. The Database and Virtualization workloads benefit from

reduced memory la- tency in 2P, but have less processor-memory affinity and less overall memory

150
130
110
90
70
50
30
10

–10
2P 4P

Figure 9. Early hardware measurements of

application improvement with HT Assist.

SPEC2006INT-Rate (estimated)

SPEC2006FP-Rate (estimated)

SPECJBB2005 (estimated)

80
70
60
50
40
30
20
10

0
2P 4P

Figure 10. Simulation-based studies of

performance improvement with HT Assist

across a diverse set of commercial

workloads.

Database1 Java Business JVM1

Database2 Java Business JVM2

Database2 Business1

Database3 Virtualization1

WebServing1 400
350
300
250
200
150
100

50

(a)

100

90

80

70

60

50

40

30

20

10

0
2P 4P

0
2P 4P

(b)

Figure 8. Memory bandwidth improvement (a) and relative memory latency

(b) with and without HT Assist. Latency is normalized to HT Assist disabled

as 100 percent (lower is better).

Local DRAM latency

One hop DRAM latency

P
e
rc

e
n
t

P
e
rc

e
n
t

P
e
rc

e
n
t P

e
rc

e
n
t

................... Page | 276 Copyright @ 2020 Authors

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

T

bandwidth need; therefore, the gains are smaller com- pared to other workloads. These
workloads are more sensitive to reduced L3 capacity. In 4P, the larger relative improvement

in average memory latency and the greater number of CPUs contending for effective memory
bandwidth lead to larger relative gains compared to 2P.

he ‘‘Magny Cours’’ combination of superscalar cores, high core count, and

virtualization support make it an appro- priate choice for running a heterogeneous
mix of workloads in the data center. The G34 socket infrastructure provides suffi-

cient interconnect and memory bandwidth headroom to accept upgrades of future
generations of plug-compatible processors, which are already in development. MICRO

Acknowledgments

An exceptional team of AMD technical staff designed, verified, and tested the

‘‘Magny Cours’’ processor.

..

References

1. K. Olukotun, L. Hammond, and J. Laudon, Chip Multiprocessor Architecture:

Tech- niques to Improve Throughput and Latency, Morgan & Claypool, 2007.

2. J. Brutlag, ‘‘Speed Matters for Google Web Search,’’ Google,

http://code.google.com/ speed/files/delayexp.pdf.

3. K. Asanovic et al., The Landscape of Parallel Computing Research: A View from

Berkeley, tech. report UCB/EECS-2006-183, Electrical Eng. and Computer Science

Dept., Univ. of California, Berkeley, 2006.

4. C. Keltcher et al., ‘‘The AMD Opteron Pro- cessor for Shared Memory

Multiprocessor Systems,’’ IEEE Micro, vol. 23, no. 2, 2003, pp. 66-76.

5. P. Conway and W. Hughes, ‘‘The AMD Opteron Northbridge Architecture,’’

IEEE Micro, vol. 27, no. 2, 2007, pp. 10-21.

6. C. Moore, and P. Conway, ‘‘General Purpose Multiprocessors,’’ Multicore Pro-

cessors and Systems, S. Keckler, K. Olukotun, and P. Hofstee, eds., Springer, 2009.

7. D. Culler, J. Pal Singh, and A. Gupta, Parallel Computer Architecture: A

Hardware/Software Approach, Morgan Kaufmann, 1999.

8. J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach,

4th ed., Morgan Kaufmann, 2007.

9. A. Kleen, ‘‘A NUMA API for Linux,’’ SUSE Labs white paper, Aug. 200

http://code.google.com/

