

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

Page | 339 Copyright @ 2020 Authors

Caches with Flexible Inclusion for Preventing LLC Side-Channel Attacks

Mr.Gandhi Rath
1
*, Mr.Manas Ranjan Behuria

2

1
*Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR
2
Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

 gandhirath@thenalanda.com*, manasranjan@thenalanda.com

ABSTRACT

Lately, Last Level Caches (LLCs) were the target of side-channel attacks. The assaults need the

capacity to remove crucial data from the cache structure, exposing upcoming attacks. We suggest

Relaxed Inclusion Caches (RIC), a simple cache architecture that guards against LLC side channel

attacks. When not required, RIC relaxes inclusion, preventing the attacker from changing the

victim's data with data from the local core caches and preventing the leakage of crucial data. By

needing very minor changes to the cache, RIC increases performance (by around 10%) and

maintains the snoop filtering functionality of inclusive cache hierarchies.

1. INTRODUCTION

Side channel attacks represent a dangerous vulnerability that exploits weaknesses in the
implementation of otherwise secure systems and algorithms. A particularly dangerous form of
side channel attacks is the one targeting shared mi- croprocessor resources on multi-core
processors. Such at- tacks can be launched remotely without special privileges, removing the
need for physical proximity present for many analog channels, and significantly lowering the
barrier for launching side channel attacks. For example, such attacks can be used on cloud
computing systems to allow a malicious application to exfiltrate sensitive data from other co-
located applications [1, 2, 3, 4].

Initially, cache side-channel attacks were performed through L1 caches. To successfully perform
an attack, the adversary
needs to achieve co-residency with the victim process on the same core, which can be
challenging [1, 5]. Moreover, a number of defenses have been proposed to mitigate the L1-based
attacks [6, 7]. Consequently, the focus of recent attacks shifted from first-level caches to shared
Last-Level Caches (LLC). Successful and fast secret key reconstruction from the LLC side
channel has been shown under different assumptions about the attacker’s capabilities [8, 2, 3, 9].

In light of serious threat posed by cache based side-channel attacks, it is important to protect
cache hierarchies from these attacks, but without over-designing for security. De- fenses
developed for the L1 cache do not translate effec- tively to the new attacks on LLCs because
of differences in the size, sharing, and complexity between these two levels of the cache.
Recently, Liu et al. [10] proposed the first known solution for protecting against side-channel
attacks on the LLC. Their design uses a combination of partition- ing (via page coloring) and
locking, which are individually known for protection against L1 attacks [11, 12], to allow these
techniques to scale to the large number of threads that share the LLC. The solution requires
support from the OS and the programming language to mark and allocate secure pages
respectively. Locking and partitioning reduces the dynamic availability of cache space, which
can cause perfor- mance degradation under certain workload combinations.

In this paper, we introduce Relaxed Inclusion Caches (RICs), a new low-complexity
mitigation for LLC side-channel at- tacks that simultaneously improves performance relative
to inclusive caches. We observe that PRIME+PROBE, the most general of side-channel
attacks, on the LLC is possible be- cause of the inclusive nature of modern cache hierarchies.
Inclusion simplifies cache coherence because the LLC can serve as a snoop filter. However,
inclusive hierarchies make systems vulnerable to the LLC attacks. Specifically, if an

mailto:manasranjan@thenalanda.com

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

Page | 340 Copyright @ 2020 Authors

attacker can evict the victim’s critical data from the shared LLC, the inclusive property
guarantees that this data will also be evicted, using back-invalidations, from the local core
caches of the core where the victim process executes. As

a result of the data being evicted from the private core caches, the next access to the critical
data by the victim will miss into the private caches and thus will be visible to the attacker
through the LLC. RIC avoids the eviction of critical data from the local caches, thus defeating
the at- tacks. RIC also improves performance relative to inclusive caches, because it reduces
data replication and uses the ca- pacity of the cache hierarchy more efficiently. Compared to
non-inclusive caches, RIC also retains snoop filtering thus simplifying cache coherence.

2. LLC SIDE CHANNELS: THREAT MODEL

To understand the attack principles, consider ciphers, such as AES, Blowfish, or Twofish where,
for performance rea- sons, most implementations use precomputed lookup tables. The indices to
these tables are used to perform the cryp- tographic functionality and are partially derived from
the secret key. Therefore, by detecting the cache sets accessed by the cipher (through the LLC
side channel), the attacker learns which entry of the table was accessed, thus obtaining
information about the secret key.

There are two general approaches for cache side channel attacks, including the ones on LLC:
FLUSH+RELOAD [8] and PRIME+PROBE [3, 9]. FLUSH+RELOAD LLC attacks [8] rely
on cryptographic lookup tables, which are not a secret by themselves, being shared between the
victim process and the attacker process. As a result, the attacker can use the clflush x86
instruction to flush specific cache lines that con- tain cryptographic tables from all cache levels,
including the LLC. When the data is accessed again, the attacker can tell whether the victim
accessed the same sets (cache hit) or not (cache miss). FLUSH+RELOAD can be defeated by
disallow- ing sharing for critical data.

PRIME+PROBE is the most general cache side channel at- tack because it does not require
sharing of the critical data between the attacker and the victim [3, 2, 9]. The attacker fills the
cache with its own data during the prime stage. It later probes the cache with the same data,
while timing the access. If it detects a cache miss, this indicates that the victim accessed the
corresponding cache set, exposing the cache sets the victim is accessing. Recent commercial
processors implement inclusive cache hierarchies to simplify cache coherence [13, 14]. With
inclusive caches, the attacker can evict the victim’s data from the LLC, and the inclusion property
guarantees the data eviction from the local core cache of the victim, causing victim’s next access
to reach the LLC and exposing the access to the attacker.

Liu et al. [3] demonstrated an LLC PRIME+PROBE attack against ElGammal cipher.
ElGammal cipher computes the critical data on-the-fly; the fact that the data is writable has
implications on relaxed inclusion which we discuss later. Ira- zoqui et al. [2] demonstrated a
similar attack on AES, albeit one that makes a number of assumptions on the synchro- nization
between the victim and the attacker and assumes that attacker has access to the ciphertext.
Kayaalp et al. [9] presented a PRIME+PROBE attack on LLCs that does not require large pages
(as do the previous two attacks).

Consistent with these published attacks [8, 3, 2, 9], we assume an attacker and a victim are co-
located on the same machine, but not necessarily on the same core. The attacker process has no
special privileges.

3. RIC: RELAXED INCLUSION CACHES

LLC attacks rely on the inclusive property of modern cache hierarchies where a cache line
that is replaced from the LLC is evicted from the private core caches (L1 and L2). To
achieve security, retain snoop filtering, and improve performance in a low-complexity manner,
we propose a side channel protection for inclusive caches that relaxes the in- clusion property

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

Page | 341 Copyright @ 2020 Authors

Inclusive

2 cores
RIC-cache Non-Inclusive Inclusive

4 cores
RIC-cache Non-Inclusive

N
o
rm

a
li
z
e
d

 I
P
C
 t

h
ro

u
g
h
p
u
t

N
o
rm

a
li
z
e
d
 I
P
C
 t

h
ro

u
g
h
p
u
t

where it is safe to do so.
In particular, we relax inclusion in the following two cases:

Read-only data, which includes the critical data for most ciphers (which is constant) as
well as all instruc- tions. It is safe to relax inclusion on read-only data since such data is
never modified and therefore does not require cache coherence. Thus, the data can be
safely cached in a non-inclusive way while retaining snoop filtering. In particular, when
the data is present in the core caches but not in the LLC, there is no need to snoop the
core caches since the data cannot be modified.

Thread private data: We recognize that a few impor- tant ciphers, such as ElGamal [15],
also compute and write the critical data before using it [3]. For ElGamal, in the sliding
window implementation of modular ex- ponentiation, the multipliers are critical data and
they are computed on-the-fly, therefore requiring read and write access. Such ciphers would
not be protected from by relaxing inclusion on read-only data. We observe that it is also
safe to relax inclusion on data that is not shared such as thread-private data. For such
data, even if it is updated, we know that it is only accessed by a single thread and
coherence is not needed. Care must be taken if a thread is migrated from one core to
another. In this case, any modified data must be flushed, or written through to the LLC.

Relaxing inclusion on read-only data provides side channel protection for most ciphers. The
critical data is typically maintained in the form of precomputed tables that are only read during
the execution of cryptographic codes, and never modified. Moreover, attacks on the instruction
cache sets have also been proposed [3, 9]; these sets are also protected by this form of relaxed
inclusion since instructions are read- only. Similarly, for ciphers that modify data, if the critical
data is private, inclusion may be relaxed on such data also providing protection from
PRIME+PROBE LLC side channel attacks.

To implement RIC, the caches are extended with a single bit per cache line to mark relaxed
inclusion. Upon replace- ment, a relaxed inclusion cache line does not generate back-
invalidations to enforce inclusion. Snoop filtering is used as is for relaxed inclusion data
because it is either never mod- ified or never shared, correctness is preserved despite the
relaxed inclusion property.

With respect to read-only data, relaxing the inclusion property for all read-only memory
pages avoids the need to mark critical data, and also increases the performance gains from this
technique. Identifying thread-private data automatically is more difficult in general [16]. For
appli- cations that are not multi-threaded, the full memory im- age of the process may be
treated as thread-private. How- ever, for multi-threaded applications, protecting writeable

2 2 2

1.5

.55

1 1 1

0.5

0.5

0.5

0

0

0

•

•

Inclusive

8 cores
RIC-cache Non-Inclusive

N
o
rm

a
li
z
e
d
 I
P
C
 t

h
ro

u
g
h
p
u
t

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

Page | 342 Copyright @ 2020 Authors

Inclusive RIC-cache Non-Inclusive Inclusive RIC-cache Non-Inclusive

N
o
rm

a
li
z
e
d
 I
P
C
 t

h
ro

u
g
h
p
u
t N

o
rm

a
li
z
e
d

 I
P
C
 t

h
ro

u
g
h
p
u
t

Benchmark

Benchmark (gobmk+mcf+libquantum)Benchmark

(gobmk+mcf+libquantum+bzip2+calculix+astar)

Figure 1: RIC Performance: 2MB LLC

2 2 2

1.5

1.5

1.5

1 11

0.5

0.50.5

0

0

0

gobmk+mcf+libquantum)

Benchmark (gobmk+mcf+libquantum+bzip2+calculix+astar)

Figure 2: RIC Performance: 4MB LLC

data requires application support to mark the data as pri- vate/relaxed inclusion. A limitation of
RIC is that it cannot protect writeable critical data that is not private (i.e., that is shared among
threads); however, we are not aware of any ciphers that would benefit from such an
implementation.

Special considerations have to be given to memory page permission changes. A permission
change in the PTE en- try of a read-only page can occur for the following reasons:
(a) the permissions are modified, for example via mprotect system call; (b) the page is torn down,

for example via mun- map/exit system call; (c) the page is swapped out of memory to secondary
storage. For cases (b) and (c) above, the data corresponding to these pages cannot be accessed

from the cache because the mappings are removed from the page ta- ble. For scenario (a) above, in
order to avoid using stale data in the local caches (the data with old ”read-only” per- mission),

the OS can flush those lines from the cache using the same mechanisms already in place for cases
(b) and (c). Another scenario that requires attention is that of private data that is marked with

relaxed inclusion when the thread that is operating on the data migrates after a context switch from
one core to another. In this case, if the data has been replaced from the LLC, stale data may be read

from memory.
Thus, thread migration events must be either avoided or accompanied with a flush of the private
caches.

Inclusive RIC-cache Non-Inclusive

N
o
rm

a
li
z
e
d
 I
P
C
 t

h
ro

u
g
h
p
u
t

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

Page | 343 Copyright @ 2020 Authors

2MB 4MB 2MB 4MB

Parameter Configuration

8-way issue, 128-entry ROB, 32-entryERFORMANCE EVALUATION OF RIC

In this section, we present performance evaluation of RIC. We extend the MSim multicore
simulator [17] which imple- ments inclusive caches, to model non-inclusive caches as well as
RIC. Unless otherwise stated, the configuration of the simulator is shown in Table 1. In the
first study, we paired the SPEC 2006 benchmarks following the methodology de- scribed in
[18] in terms of the selection of workloads, and evaluated the combined throughput of 2-, 4-, and
8-threaded workloads.

The RIC configuration in the experiments relaxes exclu- sion only on memory marked by
the compiler to be read- only. For SPEC 2006, since the benchmarks are single- threaded, it
is possible to treat all memory as private, ob- taining using RIC the same performance as non-
inclusive caches, but at a much lower complexity, and without any back-invalidate traffic.

Figure 1 and Figure 2 show the performance of RIC com- pared to inclusive and non-inclusive
caches, for systems with a 2MB and 4MB LLC cache respectively. Each figure has 3 graphs
corresponding to a 2 core, 4-core, and 8-core system respectively. The benchmark names shown in
parenthesis at the bottom of each chart are included with every workload. For example, every 4-
core workload contains: gobmk, mcf, libquantum and the fourth benchmark is denoted with the
bar’s label. As can be seen in the figure, non-inclusive caches noticeably outperform inclusive
caches on average, and the difference increases as the ratio of the local core cache size to

Window Size
Issue Queue, 48-entry LSQthe LLC size is increased. Of course, this advantage comes
L1 I-Cache 32 KB, 4-way, 64B line, 1 cycle hit L1 D-Cache 32 KB, 4-way, 64B
line, 1 cycle hit L2 Unified Cache 256 KB, 8-way, 64B line, 10 cycle hit L3 Unified

Cache 2 MB/512 KB, 16-way, 64B line, 30
cycle hit

Memory latency 300 cycles

Table 1: Configuration of the simulated processorat a cost of not having a snoop filter. RIC

caches prevent

invalidations of read-only data and increase the effective size of the cache, which leads to
higher performance compared to inclusive caches. While non-inclusive cache has perfor-
mance benefits, it is significantly more complex because it does not support snoop filtering.
On the other hand, the RIC design is secure, retains snoop filtering advantages and
outperforms inclusive caches. The advantage of RIC and non-inclusive caches is higher with
a 2MB LLC because the

3 1 1

2.5

0.8

0.8

2

1.5

2MB 4MB

Im
p
ro

v
e
m

e
n
t
 i
n
 I
P
C

F
ra

c
ti

o
n
 o

f
b
a
c
k
 i
n
v
a
li
d
a
te

s
e
li
m

in
a
te

d

F
ra

c
ti

o
n
 o

f
b
a
c
k
 i
n
v
a
li
d
a
te

s
e
li
m

in
a
te

d

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

Page | 344 Copyright @ 2020 Authors

1

0.50.6

0.4

0.20.6

0.4

0.2

0 0 0

Benchmark

(a) IPC of individual cores

Benchmark

(b) Reduction in back invalida- tions

Benchmark

(c) Back invalidate rate

Figure 3: Performance of a Selected Benchmark Mix

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

Page | 345 Copyright @ 2020 Authors

29 1 1

cache size is more constrained; the effective increase in the cache size that comes from relaxing
inclusion has a larger ef- fect. The advantage also increases with the number of cores due to the
higher pressure on the shared cache.

In order to explain the reasons for the performance ad- vantages, we first show the individual
IPC (committed In- structions per Cycle) of the cores in one of the 8-core experi- ments in Figure
3a. First, we observe that some applications have almost no benefit from RIC, while others (e.g.,
gobmk) benefit significantly, especially when the LLC size is small. Figure 3b shows that the
percentage of back-invalidations eliminated by RIC is fairly constant across the benchmarks.
However, Figure 3c shows that the rate of back-invalidations varies significantly between the
applications, explaining the

Parameter Value

Total Size 8MB

Line Size 64 bytes
Associativity 16-way
Sets 8192
Tag Bits 29
Physical Address Width 48 bits Process Technology 32 nm

Table 2: RIC cache model configuration

Dirty Bit Existing Bit(s) Added Bit(s) Relaxed-Inclusion Bit
difference in impact for RIC relative to inclusive caches.

ag Bits

Data Bits

1.2

1

Inclusive RIC-cache Non-Inclusive

Figure 5: RIC cache line

0.8

0.6

0.4

0

Benchmark (gobmk+mcf+libquantum+bzip2+calculix+astar)

Figure 4: Memory pressure

Finally, we examine the impact of RIC on the memory pressure experienced by the system in

Figure 4. Non-inclusive caches reduce the memory pressure in this configuration (8 core, 4MB

512

M
e
m

o
ry

 p
r
e
ss

u
re

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

Page | 346 Copyright @ 2020 Authors

LLC) by about 30%, while RIC reduces the mem- ory pressure by about 10%, roughly
corresponding to the improvement in IPC for this configuration.

4. RIC HARDWARE COMPLEXITY

To evaluate the impact that RIC has on hardware com- plexity, we modeled it using Cacti [19]
version 6.5. The cache that we modeled is based on an L3 cache that is consistent with recent
Intel Core i7 series processors, which represents the LLC in these designs. The configuration
parameters of

We conservatively assumed that the only status bit neces- sary is a ”dirty” bit, although more
status bits might be nec- essary for a specific implementation (i.e. to support cache coherency).
Given this assumption, the total size of each cache line is 542-bits, thus our hypothesis was
that RIC’s addition of a single read-only bit would have a negligible impact on the complexity
of the cache as a whole. Our eval- uation of the RIC cache focuses on three key aspects of the
design: the cache’s access time, its hardware cost in terms of die area, and its energy
consumption. Due to the addition of the read-only bit, the access time of the modeled cache is
increased by 0.018%, the total area of the cache is increased by 0.176%, and the total dynamic
energy per read access is increased by 0.122%. Moreover, RIC does not affect the primary
operation of the cache; the bit is only used to filter out back-invalidations upon replacement of
a cache line.

5. SECURITY ANALYSIS OF RIC

We measured the leaked critical information through the side channel to establish the security
properties of RIC. We simulate encryption of 15MBs of random data using core AES
implementation of OpenSSL 1.0.1j, where the critical
this cache are shown in Table 2. The format of each cache line is shown in Figure 5 which
depicts the width (in bits) of the various fields of each cache line, including the newly added
relaxed inclusion bit that is added to support RIC.
data size is 4KB. Table 3 shows the number of evictions of the lookup table entries from the L1
cache for different cache sizes (which would be visible to the attacker). Even with a 12KB 3-
way set associative cache, the data is completely

protected. Compare this to core cache sizes which are over 256K even for mobile processors.

this by ensuring that data lines with high temporal local- ity are not back-invalidated from
the local core caches upon the LLC eviction. However, TLA caches are still vulnera-

L1 Sizeumber ofPercentage of allble to advanced side channel attacks, because the

attacker can carefully control the temporal locality in its access pat- terns to effectively

degenerate TLA caches into traditional inclusive caches.
The NCID design [22] is a non-inclusive cache architecture with inclusive directory. It

allows the data in the LLC to

Table 3: Evictions of L1 Critical Data under RIC

Consider now that the LLC is protected from the attacks using RIC. However, to provide a

complete protection, the possibility of a coordinated attack on multiple cache levels also has to
be considered. If an attacker simultaneously tar- gets the LLC and the local core caches, then not
all defenses work synergistically with RIC under such a threat model, and the defenses for the
local caches have to be chosen care- fully.

Specifically, only the techniques that guarantee that the critical data remains in the local caches

 evictions critical accesses

4KB 1-way 7,831,093 4.99%
8KB 2-way 163,262 0.10%

12KB 3-way 0 0.00%

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

Page | 347 Copyright @ 2020 Authors

and cannot be evicted by the attacker’s accesses to the local caches themselves would provide
security. These include cache line locking [12], static partitioning, or secure dynamic

partitioning [11]. On the other hand, techniques that do not have such prop- erty, such as
randomized victim selection [12, 6] or fuzzy timers [20] do not complement RIC against

coordinated at- tacks. The vulnerability occurs because these defenses allow the critical data to be
evicted from the core caches, thereby exposing victim’s accesses to the attacker through the

LLC. On the other hand, if the LLC is protected through parti- tioning or randomization (and
not RIC), then any technique for protecting the local core caches will be secure. However, those
techniques have substantial performance and complex- ity implications when applied at the LLC

level as discussed
in Section 7.

6. RELATED WORK

RIC and Alternative Cache Hierarchies: From a per- formance perspective, RIC fits in the
category of relaxing cache coherence protocols [16, 21]. Most similar to our work, Cuesta et al. [16]
propose eliminating the overhead of coher- ence tracking of private data in Distributed Shared
Memory (DSM) architectures. Alisafaee [21] improves on this solu- tion by allowing coherence
to be relaxed for data that is pri- vate temporarily or shared across a subset of the processors. Both
of these approaches do not consider read-only data or coherence relaxation in the context of on-
chip/snooping bus protocols.

One simple solution from the security standpoint is to completely move away from the inclusive
property to retain critical data in the core caches. However, this approach eliminates the substantial
performance and complexity ben- efits of snoop filtering. One could ask whether solutions in the
space between inclusive and non-inclusive caches, which were proposed for performance reasons, are
sufficient for se- curity. As a representative of this class of work, we consider TLA caches [18] and
NCID caches [22].

TLA caches [18] have been proposed to bridge the perfor- mance gap between inclusive and
non-inclusive hierarchies, while retaining the snoop filtering capability. TLA achieves
be non-inclusive or exclusive, but retains tag inclusion in the LLC directory to support
complete snoop filtering. The NCID design is not secure against side-channel attacks; an
attacker can oversubscribe the NCID directory by streaming through large amounts of data,
causing the secure data to be discarded as in the baseline inclusive cache. Enlarging the
directory to a secure configuration significantly increases the overhead. Besides the area overhead,
NCID changes the core circuitry of the caches.
Existing L1 Defenses: Most defenses proposed for L1 caches do not apply directly at the
LLC level. One simple technique to make caches immune to side channel attacks is static
partitioning to create isolation [23]. Unlike the L1 cache which is only shared when a core is
hyperthreaded, on a many-core system the number of threads sharing the LLC can exceed the
number of ways available in the cache, mak- ing cache way-based partitioning impossible.
These limita- tions also apply to designs that provide a mixture of exclu- sive and shared cache
ways [11]. Locking of critical data [12, 24] in the cache prevents it from being replaced by the
at- tacker’s prime operations. The solution requires support from the OS, programming
language and compiler to mark the critical data, in addition to a bit for each cache line to in-
dicate whether it is locked. Randomization, exemplified by NewCache [6], randomizes the
victim selection process on cache replacements, so that the attacker cannot glean useful
information from its cache misses. The solution requires an index remapping table, extra bits in
the cache to indicate which lines are subject to the random victim selection, and also support
from the software layers to mark such critical data [6].
LLC Defenses: Zhou et al. [25] introduced a software based solution for mitigating leakage
through the LLC. In particular, the solution has two components: (1) To defeat
FLUSH+RELOAD attacks, they use a copy-on-access to du- plicate pages shared across VMs

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

Page | 348 Copyright @ 2020 Authors

when they are being ac- cessed concurrently; and (2) To defeat PRIME+PROBE at- tacks,
they manage the cacheability of pages to limit the number of ways in each set that each VM
can occupy. These techniques result in significant slowdown, up to 25% for some workloads,
although usually significantly lower.

Most related to our work is CATalyst: a recent defense targeted towards protecting the LLC
[10]. CATalyst uses Intel’s recent Cache Allocation Technology (CAT) to par- tition the
cache into an unrestricted insecure partition and a secure partition (similar to page coloring).
In addition, within the secure partition, the critical data may not be evicted since it is pinned in
the cache and therefore can- not be replaced by the attacker. CATalyst requires limited
changes to the programming language and run-time, in ad- dition to the architecture, to mark
the sensitive data and to differentiate allocation of secure and unrestricted memory pages.

7. CONCLUDING REMARKS

Shared LLCs have become a target of recent software- based side-channel attacks. We
proposed the Non-Inclusive Read-Only (RIC) cache as a mechanism to efficiently pro- tect
caches against side channel attacks. The key idea of RIC is to relax the inclusion property where
cache coherence is not needed (e.g., read-only data). As a result, RIC retains the security-critical
data in the local core caches and makes accesses to it invisible to the attacker through the LLC
side- channel, thus closing the vulnerability to side channel at- tacks in principle. The key benefit
of RIC is that security is achieved with performance gain, snoop filtering capability, low design
complexity and no modifications to the software. As a result, RIC represents an attractive design
point in the domain of secure and high performance caches.

8. ACKNOWLEDGEMENT

This material is based on research sponsored by the Na- tional Science Foundation grant CNS-
1422401.

9. REFERENCES

[1] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage,
“Hey, you, get off of my cloud: Exploring information leakage in third-party compute
clouds,” in 16th ACM Conference on Computer and Communications Security (CCS), pp.
199–212, 2009.

[2] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$a: A shared cache attack that works across
cores and defies vm sandboxing and its application to AES,” in IEEE Symposium on
Security and Privacy (SP), 2015.

[3] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-channel attacks
are practical,” in IEEE Symposium on Security and Privacy (SP), San Jose, CA, US,
2015.

[4] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over ASLR: Attacking
branch predictors to bypass ASLR,” in 49th International Symposium on Micrarchitecture
(MICRO), 2016.

[5] T. Kim, M. Peinado, and G. Mainar-Ruiz, “Stealthmem: System-level protection
against cache-based side channel attacks in the cloud,” in USENIX Security Symposium,
Aug. 2012.

[6] Z. Wang and R. Lee, “A novel cache architecture with enhanced performance and security,”
in Proc. International Symposium on Microarchitecture (MICRO), Dec. 2008.

[7] F. Liu and R. Lee, “Random fill cache architecture,” in International Symposium on
Microarchitecture, Cambridge, UK, 2014.

[8] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games – bringing access-based cache
attacks on aes to practice,” in Security and Privacy (SP), 2011 IEEE Symposium on, pp.
490–505, 2011.

Juni Khyat ISSN: 2278-4632
(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

Page | 349 Copyright @ 2020 Authors

[9] M. Kayaalp, N. Abu-Ghazaleh, D. Ponomarev, and
A. Jaleel, “A high-resolution side-channel attack on last-level cache,” in Proc. of the ACM
Design Automation Conference (DAC), 2016.

[10] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas,
G. Heiser, and R. Lee, “Catalyst: Defeating last-level cache side channel attacks in cloud
computing,” in Proc. 22nd IEEE Symposium on High Performance Computer
Architecture (HPCA), 2016.

[11] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev, “Non-
monopolizable caches: Low-complexity mitigation of cache side-channel attacks,” in
ACM Transactions on Architecture and
Code Optimization, Special Issue on High Performance and Embedded Architectures and
Compilers, Jan. 2012.

[12] Z. Wang and R. Lee, “New cache designs for thwarting software cache-based side channel
attacks,” in Proc. International Symposium on Computer Architecture (ISCA), June
2007.

[13] P. H. et al., “Haswell: The fourth-generation intel core processor,” in IEEE Micro
Magazine, Apr. 2014.

[14] D. Bouvier, B. Cohen, W. Fry, S. Godey, and
M. Mantor, “Kabini: An amd accelerated processing unit system on a chip,” in IEEE
Micro Magazine, Apr. 2014.

[15] T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms,” in Advances in cryptology, pp. 10–18, Springer, 1984.

[16] B. A. Cuesta, A. Ros, M. E. Gó mez, A. Robles, and
J. F. Duato, “Increasing the effectiveness of directory caches by deactivating coherence
for private memory blocks,” in International Symposium on Computer Architecture, pp.
93–104, 2011.

[17] “M-sim version 3.0, code and documentation,” 2005. Available at:
http://www.cs.binghamton.edu/˜msim.

[18] A. Jaleel, E. Borch, M. Bhandaru, S. Steely, and
J. Emer, “Achieving non-inclusive cache performance with inclusive caches - temporal
locality aware (TLA) cache management policies,” in Proc. International Symposium on
Microarchitecture (MICRO), 2010.

[19] P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An integrated cache timing, power, and area
model,” tech. rep., Technical Report 2001/2, Compaq Computer Corporation, 2001.

[20] R. Martin, J. Demme, and S. Sethumadhavan, “Timewarp: Rethinking timekeeping and
performance monitoring mechanisms to mitigate side-channel attacks,” in International
Symposium on Computer Architecture (ISCA), June 2012.

[21] M. Alisafaee, “Spatiotemporal coherence tracking,” in Proceedings of the 2012 45th
International Symposium on Microarchitecture (MICRO), MICRO-45,
pp. 341–350, 2012.

[22] L. Zhao, R. Iyer, S. Makineni, D. Newell, and
L. Cheng, “Ncid: A non-inclusive cache, inclusive directory architecture for flexible and
efficient cache hierarchies,” in Proc. ACM International Conference on Computing
Frontiers, May 2010.

[23] D.Page, “Partitioned cache architecture as a
side-channel defense mechanism,” in Crypt. ePrint Arch., 2005.

[24] J. Kong, O. Aclicmez, J. Seifert, and H. Zhou, “Hardware-software integrated approaches
to defend against software cache-based side channel attacks,” in Int. Symp. on High
Performance Comp. Architecture (HPCA), February 2009.

[25] Z. Zhou, M. K. Reiter, and Y. Zhang, “A software approach to defeating side
channels in last-level caches,” in Proc. ACM CCS, 2016.

http://www.cs.binghamton.edu/~msim

