

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 1 Copyright @ 2020 Authors

CHARACTERIZATION AND IMPLICATIONS FOR ARCHITECTURE OF

THE PARSEC BENCHMARK SUITE

Ms.Banashree Dash
1
*, Dr. Amaresh Sahu

2

1
*Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

2
Associate Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

 banashree@thenalanda.com*, amareshsahoo@thenalanda.com

ABSTRACT

The Princeton Application Repository for Shared-Memory Computers (PARSEC), a benchmark suite for

research of Chip-Multiprocessors, is introduced and described in this work (CMPs). Multiprocessors have

already been tested using high-performance computing workloads and a small selection of synchronisation

techniques. Emerging applications in recognition, mining, and synthesis (RMS), as well as systems

applications that resemble massively multithreaded commercial programmes, are all included in PARSEC.

Our analysis demonstrates that the benchmark suite includes a broad range of working sets, locality, data

sharing, synchronisation, and off-chip traffic. The public can now access the benchmark collection.

Categories and Subject Descriptors

D.0 [Software]: [benchmark suite]

General Terms

Performance, Measurement, Experimentation

Keywords

benchmark suite, performance measurement, multithreading, shared-memory computers

1. INTRODUCTION

Benchmarking is the quantitative foundation of computer archi- tecture research. Benchmarks are

necessary to experimentally de- termine the benefits of new designs. However, to be relevant, a

benchmark suite needs to satisfy a number of properties. First, the applications in the suite should be

written with the target class of machines in mind. This is necessary to ensure that the architec- tural

features being proposed are relevant and not obviated by mi- nor rewrites of the application. Second, the

benchmark suite should represent the important applications on the target machines. Third, the workloads

in the benchmark suite should be diverse enough to exhibit the range of behavior of the target

applications. Finally, it

is important that the programs use state-of-art algorithms and tech- niques.

As time passes, the relevance of a benchmark suite diminishes. This happens not only because

machines evolve and change over time but also because new applications, algorithms, and techniques

emerge. New benchmark suites become necessary after significant changes in the architectures or

applications.

In fact, dramatic changes have occurred both in mainstream pro- cessor designs as well as applications

in the last few years. The arrival of chip-multiprocessors (CMPs) with ever increasing num- ber of cores

has made parallel machines ubiquitous. At the same time, new applications are emerging that not only

organize and cat- alog data on desktops and the Internet but also deliver improved visual experience [9].

These technology shifts have galvanized research in parallel ar- chitectures. Such research efforts rely

on existing benchmark suites. However, the existing suites [15, 14, 20, 28] suffer from a number of

limitations and are not adequate to evaluate future CMPs (Sec- tion 2). The lack of good benchmark

suites can hamper parallel architecture research as well as reduce its impact.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 2 Copyright @ 2020 Authors

To address this problem, we created a publicly available bench- mark suite called PARSEC in

collaboration with Intel Corporation. It includes not only a number of important RMS applications [9]

but also several leading-edge applications from Princeton Univer- sity, Stanford University, and the

open-source domain. The goal is to create a suite of emerging workloads that can drive CMP re- search.

A recent study [6] quantitatively demonstrated that the character- istics of PARSEC are significantly

different from SPLASH-2 (one of the most widely used parallel benchmark suites). This suggests that

using newer benchmark suites like PARSEC is necessary.

The widely perceived need for such a benchmark suite is proven by the number of researchers who are

already downloading and using PARSEC. Within the first 6 months of being made publicly available,

the benchmark suite has been downloaded more than 500 times by researchers throughout the world. The

first papers using PARSEC have been submitted.
This paper makes three contributions:
• It identifies shortcomings of commonly used benchmark suites and explains why they might be less

relevant to evaluate CMPs (Section 2).
• We present and characterize PARSEC, a new benchmark suite for CMPs that is diverse enough in

order to allow representa- tive conclusions (Sections 3 - 8).
• Based on our characterization of PARSEC, we analyze what properties future CMPs must have in

order to be able to deliver scalable performance for emerging applications (Sections 6 -
8).

2. MOTIVATION

The goal of this work is to define a benchmark suite that can be used to design the next generation of

processors. In this section, we first present the requirements for such a suite. We then discuss how the

existing benchmarks fail to meet these requirements.

 Requirements for a Benchmark Suite

We have the following five requirements for a benchmark suite: Multithreaded Applications Shared-

memory CMPs are already ubiquitous. The trend for future processors is to deliver large performance

improvements through increasing core counts on CMPs while only providing modest serial performance

im- provements. Consequently, applications that require additional

processing power will need to be parallel.

Emerging Workloads Rapidly increasing processing power is en- abling a new class of applications

whose computational re- quirements were beyond the capabilities of the earlier genera- tion of

processors [9]. Such applications are significantly dif- ferent from earlier applications (see Section 3).

Future proces- sors will be designed to meet the demands of these emerging applications and a

benchmark suite should represent them.

Diverse Applications are increasingly diverse, run on a variety of platforms and accommodate different

usage models. They in- clude both interactive applications like computer games, of- fline applications

like data mining programs and programs with different parallelization models. Specialized collections

of benchmarks can be used to study some of these areas in more detail, but decisions about general-

purpose processors should be based on a diverse set of applications.

Employ State-of-Art Techniques A number of application areas have changed dramatically over the last

decade and use very different algorithms and techniques. Visual applications for example have started

to increasingly integrate physics simula- tions to generate more realistic animations [13]. A benchmark

should not only represent emerging applications but also use state-of-art techniques.

Support Research A benchmark suite intended for research has additional requirements compared to one

used for benchmark- ing real machines alone. Benchmark suites intended for re- search usually go

beyond pure scoring systems and provide infrastructure to instrument, manipulate, and perform

detailed simulations of the included programs in an efficient manner.

 Limitations of Existing Benchmark Suites

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 3 Copyright @ 2020 Authors

In the remaining part of this section we analyze how existing benchmark suites fall short of the

presented requirements and must thus be considered unsuitable for evaluating CMP performance.

SPLASH-2 SPLASH-2 is a suite composed of multithreaded ap- plications [26] and hence seems to be an

ideal candidate to measure performance of CMPs. However, its program collec- tion is skewed towards

HPC and graphics programs. It thus does not include parallelization models such as the pipeline

model which are used in other application areas. SPLASH- 2 should furthermore not be considered

state-of-art anymore. Barnes for example implements the Barnes-Hut algorithm for N-body simulation

[4]. For galaxy simulations it has largely been superseded by the TreeSPH [12] method, which can also

account for mass such as dark matter which is not concen- trated in bodies. However, even for pure

N-body simulation barnes must be considered outdated. In 1995 Xu proposed a hybrid algorithm which

combines the hierarchical tree algo- rithm and the Fourier-based Particle-Mesh (PM) method to the

superior TreePM method [27]. Our analysis shows that simi-lar issues exist for a number of other

applications of the suite including raytrace and radiosity.
SPEC CPU2006 and OMP2001 SPEC CPU2006 and SPEC

OMP2001 are two of the largest and most significant collec- tions of benchmarks. They provide a

snapshot of current sci- entific and engineering applications. Computer architecture research,

however, commonly focuses on the near future and should thus also consider emerging applications.

Workloads such as systems programs and parallelization models which employ the producer-

consumer model are not included. SPEC CPU2006 is furthermore a suite of serial programs that is

not intended for studies of parallel machines.

Other Benchmark Suites Besides these major benchmark suites, several smaller workload collections

exist. They were usu- ally designed to study a specific program area and are thus limited to a single

application domain. Therefore they usu- ally include a smaller set of applications than a diverse

bench- mark suite typically offers. Due to these limitations they are commonly not used for scientific

studies which do not restrict themselves to the covered application domain. Examples for these types

of benchmark suites are ALPBench [15], BioPar- allel [14], MediaBench [18], MineBench [20] and

Physics- Bench [28]. Because of their different focus we do not discuss these suites in more detail.

3. THE PARSEC BENCHMARK SUITE

One of the goals of the PARSEC suite was to assemble a pro- gram selection that is large and diverse

enough to be sufficiently representative for scientific studies. It consists of 9 applications and 3 kernels

which were chosen from a wide range of application domains. PARSEC workloads were selected to

include different combinations of parallel models, machine requirements and run- time behaviors. All

benchmarks are written in C/C++ because of the continuing popularity of these languages in the near

future.
PARSEC meets all the requirements outlined in Section 2.1:
• Each of the applications has been parallelized.
• The PARSEC benchmark suite is not skewed towards HPC programs, which are abundant but

represent only a niche. It
focuses on emerging workloads.

• The workloads are diverse and were chosen from many dif- ferent areas such as computer vision,
media processing, com-

putational finance, enterprise servers and animation physics. PARSEC is more diverse than

SPLASH-2 [6].
• Each of the applications chosen represents the state-of-art tech- nique in its area.
• PARSEC supports computer architecture research in a number of ways. The most important one is

that for each workload six input sets with different properties are defined (Section 3.1).

The characteristics of the included workloads differ substantially from SPLASH-2 [6]. Recent

technology trends such as the emer- gence of CMPs and the growth of world data seem to have a strong

impact on workload behavior.

 Input Sets

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 4 Copyright @ 2020 Authors

PARSEC defines six input sets for each benchmark:

test A very small input set to test the basic functionality of the program.

simdev A very small input set which guarantees basic program behavior similar to the real behavior,

intended for simulator test and development.

simsmall, simmedium and simlarge Input sets of different sizes suitable for simulations.

native A large input set intended for native execution.

Program Problem Size
Instructions (Billions) Synchronization

Primitives
Tot
al

FLO
PS

Rea
ds

Writ
es

Locks Barrie
rs

Conditi
ons

blackscholes 65,536 options 2.67 1.14 0.68 0.19 0 8 0
bodytrack 4 frames, 4,000

particles
14.0

3
4.22 3.63 0.95 114,621 619 2,042

canneal 400,000 elements 7.33 0.48 1.94 0.89 34 0 0
dedup 184 MB data 37.1 0 11.7

1
3.13 158,979 0 1,619

facesim 1 frame,
372,126 tetrahedra

29.9
0

9.10 10.0
5

4.29 14,541 0 3,137

ferret 256 queries,
34,973 images

23.9
7

4.51 7.49 1.18 345,778 0 1255

fluidanimate 5 frames,
300,000 particles

14.0
6

2.49 4.80 1.15 17,771,9
09

0 0

freqmine 990,000
transactions

33.4
5

0.00 11.3
1

5.24 990,025 0 0

streamcluster 16,384 points per
block,
1 block

22.1
2

11.6 9.42 0.06 191 129,60
0

127

swaptions 64 swaptions,
20,000 simulations

14.1
1

2.62 5.08 1.16 23 0 0

vips 1 image,
2662 × 5500 pixels

31.2
1

4.79 6.71 1.63 33,586 0 6,361

x264 128 frames,
640 × 360 pixels

32.4
3

8.76 9.01 3.11 16,767 0 1,056

Table 1: Breakdown of instructions and synchronization primitives for input set simlarge on a

system with 8 cores. All numbers are totals across all threads. Numbers for synchronization

primitives also include primitives in system libraries. "Locks" and "Barriers" are all lock- and

barrier-based synchronizations, "Conditions" are all waits on condition variables.

test and simdev are merely intended for testing and develop- ment and should not be used for scientific

studies. The three sim- ulator inputs for studies vary in size, but the general trend is that larger input sets
contain bigger working sets and more parallelism. Finally, the native input set is intended for performance

measure- ments on real machines and exceeds the computational demands which are generally considered

feasible for simulation by orders of magnitude. Table 1 shows a breakdown of instructions and syn-

chronization primitives of the simlarge input set which we used for the characterization study.

 Workloads

The following workloads are part of the PARSEC suite:

blackscholes This application is an Intel RMS benchmark. It cal- culates the prices for a portfolio of

European options ana- lytically with the Black-Scholes partial differential equation (PDE) [7]. There

is no closed-form expression for the Black- Scholes equation and as such it must be computed numeri-

cally.

bodytrack This computer vision application is an Intel RMS work- load which tracks a human body with

multiple cameras through an image sequence [8]. This benchmark was included due to the increasing

significance of computer vision algorithms in areas such as video surveillance, character animation

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 5 Copyright @ 2020 Authors

and computer interfaces.

canneal This kernel was developed by Princeton University. It uses cache-aware simulated annealing

(SA) to minimize the routing cost of a chip design [3]. Canneal uses fine-grained parallelism with a lock-

free algorithm and a very aggressive synchronization strategy that is based on data race recovery

instead of avoidance.

dedup This kernel was developed by Princeton University. It com- presses a data stream with a

combination of global and local compression that is called ’deduplication’. The kernel uses a

pipelined programming model to mimic real-world imple- mentations. The reason for the inclusion

of this kernel is that deduplication has become a mainstream method for new- generation backup

storage systems [23].

facesim This Intel RMS application was originally developed by Stanford University. It computes a

visually realistic animation of the modeled face by simulating the underlying physics [24]. The

workload was included in the benchmark suite because an increasing number of animations employ

physical simulation to create more realistic effects.

ferret This application is based on the Ferret toolkit which is used for content-based similarity search

[16]. It was developed by Princeton University. The reason for the inclusion in the benchmark suite

is that it represents emerging next-generation search engines for non-text document data types. In the

bench- mark, we have configured the Ferret toolkit for image similar- ity search. Ferret is parallelized

using the pipeline model.

fluidanimate This Intel RMS application uses an extension of the Smoothed Particle Hydrodynamics

(SPH) method to simulate an incompressible fluid for interactive animation purposes [19]. It was

included in the PARSEC benchmark suite because of the increasing significance of physics

simulations for anima- tions.

freqmine This application employs an array-based version of the FP-growth (Frequent Pattern-growth)

method [10] for Frequent Itemset Mining (FIMI). It is an Intel RMS benchmark which was originally

developed by Concordia University. freqmine was included in the PARSEC benchmark suite because of

the increasing use of data mining techniques.
streamcluster This RMS kernel was developed by Princeton Uni- versity and solves the online clustering

problem [21]. stream- cluster was included in the PARSEC benchmark suite be- cause of the importance
of data mining algorithms and the prevalence of problems with streaming characteristics.

swaptions The application is an Intel RMS workload which uses the Heath-Jarrow-Morton (HJM)

framework to price a portfo- lio of swaptions [11]. Swaptions employs Monte Carlo (MC) simulation to
compute the prices.

vips This application is based on the VASARI Image Processing System (VIPS) [17] which was

originally developed through several projects funded by European Union (EU) grants. The benchmark

version is derived from a print on demand service that is offered at the National Gallery of London,

which is also the current maintainer of the system. The benchmark includes fundamental image

operations such as an affine transforma- tion and a convolution.

x264 This application is an H.264/AVC (Advanced Video Coding) video encoder. H.264 describes the

lossy compression of a video stream [25] and is also part of ISO/IEC MPEG-4. The flexibility and

wide range of application of the H.264 stan- dard and its ubiquity in next-generation video systems

are the reasons for the inclusion of x264 in the PARSEC benchmark suite.

4. METHODOLOGY

In this section we explain how we characterized the PARSEC benchmark suite. We are interested in

the following characteristics: Parallelization PARSEC benchmarks use different parallel mod- els which

have to be analyzed in order to know whether the programs can scale well enough for the analysis of

CMPs of a

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 6 Copyright @ 2020 Authors

certain size.

Working sets and locality Knowledge of the cache requirements of a workload are necessary to identify

benchmarks suitable for the study of CMP memory hierarchies.

Communication-to-computation ratio and sharing The commu- nication patterns of a program

determine the potential impact of private caches and the on-chip network on performance.

Off-chip traffic The off-chip traffic requirements of a program are important to understand how off-chip

bandwidth limitations of a CMP can affect performance.

In order to characterize all applications, we had to make several trade-off decisions. Given a limited

amount of computational re- sources, higher accuracy comes at the expense of a lower number of

experiments. We followed the approach of similar studies [26, 14] and chose faster but less accurate

execution-driven simulation to characterize the PARSEC workloads. This approach is feasible be- cause

we limit ourselves to study fundamental program properties which should have a high degree of

independence from architec- tural details. Where possible we supply measurement results from real

machines. This methodology allowed us to gather the large amount of data which we present in this

study. We preferred ma- chine models comparable to real processors over unrealistic models which might

have been a better match for the program needs.

 Experimental Setup

We used CMP$im [14] for our workload characterization. CMP-

$im is a plug-in for Pin [22] that simulates the cache hierarchy of a CMP. Pin is similar to the ATOM

toolkit for Compaq’s Tru64 Unix on Alpha processors. It uses dynamic binary instrumentation to insert

routines at arbitrary points in the instruction stream. For the characterization we simulate a single-level

cache hierarchy of a CMP and vary its parameters. The baseline cache configuration was a shared 4-way

associative cache with 4 MB capacity and 64 byte lines. By default the workloads used 8 cores. All

experiments were conducted on a set of Symmetric Multiprocessor (SMP) ma- chines with x86 processors

and Linux. The programs were com- piled with gcc 4.2.1.
Because of the large computational cost we could not perform

simulations with the native input set, instead we used the simlarge inputs for all simulations and analytically
describe any differences between the two sets of which we know.

 Methodological Limitations and Error Margins

For their characterization of the SPLASH-2 benchmark suite, Woo et al. fixed a timing model which

they used for all experi- ments [26]. They give two reasons: First, nondeterministic pro- grams would

otherwise be difficult to compare because different execution paths could be taken, and second, the

characteristics they study are largely independent from an architecture. They also state that they believe

that the timing model should have only a small im- pact on the results. While we use similar

characteristics and share this belief, we think a characterization study of multithreaded pro- grams

should nevertheless analyze the impact of nondeterminism on the reported data. Furthermore, because

our methodology is based on execution on real machines combined with dynamic bi- nary

instrumentation, it can introduce additional latencies, and a potential concern is that the nondeterministic

thread schedule is al- tered in a way that might affect our results in unpredictable ways. We therefore

conducted a sensitivity analysis to quantify the impact of nondeterminism.

Alameldeen and Wood studied the variability of nondetermin- istic programs in more detail and

showed that even small pseudo- random perturbations of memory latencies are effective to force

alternate execution paths [2]. We adopted their approach and modi- fied CMP$im to add extra delays to

its analysis functions. Because running all experiments multiple times as Alameldeen and Wood did

would be prohibitively expensive, we instead decided to ran- domly select a subset of all experiments

for each metric which we use and report its error margins.
The measured quantities deviated by no more than ±0.04% from the average, with the following two

exceptions. The first excpetion

is metrics of data sharing. In two cases (bodytrack and swaptions) the classification is noticeably affected by

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 7 Copyright @ 2020 Authors

the nondeterminism of the program. This is partially caused because shared and thread- private data

contend aggressively for a limited amount of cache ca- pacity. The high frequency of evictions made it

difficult to classify lines and accesses as shared or private. In these cases, the maxi-
mum deviation of the number of accesses from the average was as high as ±4.71%, and the amount of
sharing deviated by as much as
±15.22%. We considered this uncertainty in our study and did not
draw any conclusions where the variation of the measurements did
not allow it. The second case of high variability is when the value of the measured quantity is very low

(below 0.1% miss rate or cor- responding ratio). In these cases the nondeterministic noise made

measurements difficult. We do not consider this a problem because in this study we focus on trends of

ratios, and quantities that small do not have a noticeable impact. It is however an issue for the anal- ysis of

working sets if the miss rate falls below this threshold and continues to decrease slowly. Only few

programs are affected, and our estimate of their working set sizes might be slightly off in these cases. This

is primarily an issue inherent to experimental work- ing set analysis, since it requires well-defined

points of inflection for conclusive results. Moreover, we believe that in these cases the working set size

varies nondeterministically, and researchers should expect slight variations for each benchmark run.

The implications of these results are twofold: First, they show that our methodology is not susceptible

to the nondeterministic effects of multithreaded programs in a way that might invalidate our findings.

Second, they also confirm that the metrics which we present in this paper are fundamental program

properties which cannot be distorted easily. The reported application characteristics are likely to be

preserved on a large range of architectures.

16

12

8

4

0
0 4 8 12 16

Number of Cores

Figure 1: Upper bound for speedup of PARSEC workloads based on instruction count.

10.00%

7.50%

Ideal

Blackscholes

Bodytrack

Canneal

Dedup

Facesim

Ferret

Fluidanimate

Freqmine

Streamcluster

Swaptions

Vips

X264

A
c
h
ie

v
a
b

le
 S

p
e
e
d

u
p

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 8 Copyright @ 2020 Authors

5.00%

2.50%

0.00%

Figure 2: Parallelization overhead of PARSEC benchmarks. The chart shows the slowdown of the

parallel version on 1 core over the serial version.

5. PARALLELIZATION

In this section we discuss the parallelization of the PARSEC suite. As we will see in Section 6, several

PARSEC benchmarks (canneal, dedup, ferret and freqmine) have working sets so large they should be

considered unbounded for an analysis. These working sets are only limited by the amount of main

memory in practice and they are actively used for inter-thread communication. The inability to use caches

efficiently is a fundamental property of these program and affects their concurrent behavior. Furthermore,

dedup and ferret use a complex, heterogeneous parallelization model in which specialized threads execute

different functions with different characteristics at the same time. These programs employ a pipeline with

dedicated thread pools for each parallelized pipeline stage. Each thread pool has enough threads to occupy

the whole CMP, and it is the responsibility of the scheduler to assign cores to threads in a manner that

maximizes the overall throughput of the pipeline. Over time, the number of threads active for each stage

will converge against the inverse throughput ratios of the individual pipeline stages relative to each other.

Woo et al. use an abstract machine model with a uniform instruc- tion latency of one cycle to measure

the speedups of the SPLASH-2 programs [26]. They justify their approach by pointing out that the impact

of the timing model on the characteristics which they mea- sure - including speedup - is likely to be low.

Unfortunately, this is not true in general for PARSEC workloads. While we have veri- fied in Section 4.2

that the fundamental program properties such as miss rate and instruction count are largely not

susceptible to tim- ing shocks, the synchronization and timing behavior of the pro- grams is. Using a

timing model with perfect caches significantly alters the behavior of programs with unbounded working

sets, for example how long locks to large, shared data structures are held. Moreover, any changes of the

timing model have a strong impact on the number of active threads of programs which employ thread

specialization. It will thus affect the load balance and synchroniza- tion behavior of these workloads. We

believe it is not possible to discuss the timing behavior of these programs without also consid- ering for

example different schedulers, which is beyond the scope of this paper. Similar dependencies of

commercial workloads on their environment are already known [5, 1].

Unlike Woo et al. who measured actual concurrency on an ab- stract machine, we therefore decided to

analyze inherent concur- rency and its limitations. Our approach is based on the number of executed

instructions in parallel and serial regions of the code. We neglect any delays due to blocking on

B
la

c
k
s
c
h
o
le

s

B
o
d
y
tr

a
c
k

C
a
n
n
e
a
l

D
e
d
u
p

F
a
c
e
s
im

F
e
rr

e
t

F
lu

id
a
n
im

a
te

F
re

q
m

in
e

S
tr

e
a
m

c
lu

s
te

r

S
w

a
p
ti
o
n
s

V
ip

s

X
2
6
4

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 9 Copyright @ 2020 Authors

contended locks and load imbalance. This methodology is feasible because we do not study

performance, our interest is in fundamental program charac- teristics. The presented data is largely

timing-independent and a suitable measure of the concurrency inherent in a workload. The results in

Figure 1 show the maximum achievable speedup mea- sured that way. The numbers account for

limitations such as unpar- allelized code sections, synchronization overhead and redundant

computations. PARSEC workloads can achieve actual speedups close to the presented numbers. We

verified on a large range of architectures that lock contention and other timing-dependent fac- tors are

not limiting factors, but we know of no way to show it in a platform-independent way given the

complications outlined above. The maximum speedup of bodytrack, x264 and streamcluster is limited by serial

sections of the code. fluidanimate is primar- ily limited by growing parallelization overhead. On real

machines, x264 is furthermore bound by a data dependency between threads, however this has only a

noticeable impact on machines larger than the ones described here. It is recommended to run x264 with

more threads than cores, since modeling and exposing these dependen- cies to the scheduler is a

fundamental aspect of its parallel algo- rithm, comparable to the parallel algorithms of dedup and ferret.

Figure 2 shows the slowdown of the parallel version on 1 core over the serial version. The numbers show

that all workloads use effi- cient parallel algorithms which are not substantially slower than the

corresponding serial algorithms.

PARSEC programs scale well enough to study CMPs. We be- lieve they are also useful on machines

larger than the ones analyzed here. The PARSEC suite exhibits a wider variety of parallelization models

than previous benchmark suites such as the pipeline model. Some of its workloads can adapt to different

timing models and can use threads to hide latencies. It is important to analyze these programs in the

context of the whole system.

6. WORKING SETS AND LOCALITY

The temporal locality of a program can be estimated by analyz- ing how the miss rate of a processor’s

cache changes as its capacity is varied. Often the miss rate does not decrease continuously as the size of a

cache is increased, but stays on a certain level and then

25.00%

20.00%

15.00%

10.00%

5.00%

blackscholes

2.00%

1.50%

1.00%

0.50%

bodytrack

30.00%

20.00%

WS1

WS2

WS1

WS2

WS1
WS2

M
is

s
 R

a
te

 (
%

)

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 10 Copyright @ 2020 Authors

10.00%

canneal

2.00%

1.50%

1.00%

0.50%

dedup

0.00%

0.00%

0.00%

0.00%

5.00%

4.00%

3.00%

2.00%

1.00%

facesim

10.00%

8.00%

6.00%

4.00%

WS1

WS2

WS1

WS2

WS1

WS2

M
is

s
 R

a
te

 (
%

)

1

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

1

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

1

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

1

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 11 Copyright @ 2020 Authors

2.00%

ferret

3.00%

2.00%

1.00%

fluidanimate

2.00%

1.50%

1.00%

0.50%

freqmine

0.00%

0.00%

0.00%

0.00%

WS1

WS2

WS1

WS2

1

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

1

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

1

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

1

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 368 Copyright @ 2020 Authors

20.00%

streamcluster

5.00%

swaptions

10.00%

vips

10.00%

x264

15.00%

10.00%

4.00%

3.00%

2.00%

8.00%

6.00%

4.00%

8.00%

WS1

WS2

WS1

WS1
WS2

WS1

WS2

M
is

s
 R

a
te

 (
%

)

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 369 Copyright @ 2020 Authors

6.00%

4.00%

5.00%

1.00%

2.00%

2.00%

0.00%

0.00%

0.00%

0.00%

Cache Size (HB) Cache Size (HB) Cache Size (HB) Cache Size (HB)

Figure 3: Miss rates versus cache size. Data assumes a shared 4-way associative cache with 64

byte lines. WS1 and WS2 refer to important working sets which we analyze in more detail in Table

2. Cache requirements of PARSEC benchmark programs can reach hundreds of megabytes.

Program

Input
Set

simlarge

Input Set
native

Working Set 1 Working Set 2 Working
Set 2

Data
Structur

e(s)

Size Grow
th

Rate

Data
Structure(s

)

Size Growt
h

Rate

Size
Estimate

blackscholes options 64
KB

C portfolio
data

2 MB C same

bodytrack edge
maps

512
KB

const. input frames 8 MB const. same

canneal elements 64
KB

C netlist 256
MB

DS 2 GB

dedup data
chunks

2 MB C hash table 256
MB

DS 2 GB

facesim tetrahedra 256
KB

C face mesh 256
MB

DS same

ferret images 128
KB

C data base 64
MB

DS 128 MB

fluidanimate cells 128
KB

C particle data 64
MB

DS 128 MB

freqmine transactio
ns

256
KB

C FP-tree 128
MB

DS 1 GB

streamcluster data
points

64
KB

C data block 16
MB

user-
def.

256 MB

swaptions swaptions 512
KB

C same as
WS1

same same same

1

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

1

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

1

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

1

2

4

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 370 Copyright @ 2020 Authors

vips image
data

64
KB

C image data 16
MB

C same

x264 macroblo
cks

128
KB

C reference
frames

16
MB

C same

Table 2: Important working sets and their growth rates. DS represents the data set size and C is

the number of cores. Working set sizes are taken from Figure 3. Values for native input set are

analytically derived estimates. Working sets that grow proportional to the number of cores C are

aggregated private working sets and can be split up to fit into correspondingly smaller, private

caches.

1.00% 15.00%

0.75%

10.00%

0.50%

5.00%

0.25%

0.00% 0.00%

blackscholesfluidanimate

swaptions canneal
facesim
streamclusterx264

bodytrackreqmineedupferretvips

Figure 4: Miss rates as a function of line size. Data assumes 8 cores sharing a 4-way associative

cache with 4 MB capacity. Miss rates are broken down to show the effect of loads and stores.

makes a sudden jump to a lower level when the capacity becomes large enough to hold the next important

data structure. For CMPs an efficient functioning of the last cache level on the chip is crucial because a

miss in the last level will require an access to off-chip memory.

To analyze the working sets of the PARSEC workloads we stud- ied a cache shared by all processors.

Our results are presented in Figure 3. In Table 2 we summarize the important characteris- tics of the

identified working sets. Most workloads exhibit well- defined working sets with clearly identifiable points

of inflection. Compared to SPLASH-2, PARSEC working sets are significantly larger and can reach

hundreds of megabytes such as in the cases of canneal and freqmine.
Two types of workloads can be distinguished: The first group

contains benchmarks such as bodytrack and swaptions which have working sets no larger than 16 MB. These
workloads have a limited need for caches with a bigger capacity, and the latest gen- eration of CMPs

often already has caches sufficiently large to ac- commodate most of their working sets. The second group

of work- loads is composed of the benchmarks canneal, ferret, facesim, fluidanimate and freqmine. These programs

have very large working sets of sizes 65 MB and more, and even with a relatively constrained input set
such as simlarge, their working sets can reach hundreds of megabytes. Moreover, the need of those work-

loads for cache capacity is nearly insatiable and grows with the amount of data which they process. In

Table 2 we give our esti- mates for the largest working set of each PARSEC workload for the native input

Stores

Loads

M
is

s
 R

a
te

 (
%

)

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 371 Copyright @ 2020 Authors

set. In several cases they are significantly larger and can even reach gigabytes. These large working sets are
often the consequence of an algorithm that operates on large amounts of collected input data. ferret for

example keeps a data base of fea- ture vectors of images in memory to find the images most similar to a

given query image. The cache and memory needs of these ap- plications should be considered unbounded,

as they become more useful to their users if they can work with increased amounts of data. Programs with

unbounded working sets are canneal, dedup, ferret and freqmine.
In Figure 4 we present our analysis of the spatial locality of the

PARSEC workloads. The data shows how the miss rate of a shared cache changes with line size. All

programs benefit from larger cache lines, but to different extents. facesim, fluidanimate and

streamcluster show the greatest improvement as the line size is increased, up to the the maximum value of

256 bytes which we used. These programs have streaming behavior, and an increased line size has a

prefetching effect which these workloads can take advantage of. facesim for example spends most of its

time updat- ing the position-based state of the model, for which it employs an it- erative Newton-Raphson

algorithm. The algorithm iterates over the elements of a sparse matrix which is stored in two one-

dimensional arrays, resulting in a streaming behavior. All other programs also show good improvement

of the miss rate with larger cache lines, but only up to line sizes of about 128 bytes. The miss rate is not

substantially reduced with larger lines. This is due to a limited size of the basic data structures employed

by the programs. They rep- resent independent logical units, each of which is intensely worked with

during a computational phase. For example, x264 operates on
macroblocks of 8 × 8 pixels at a time, which limits the sizes of the
used data structures. Processing a macroblock is computationally
intensive and largely independent from other macroblocks. Conse- quently, the amount of spatial locality

is bounded in these cases.

For the rest of our analysis we chose a cache capacity of 4 MB for all experiments. We could have

used a matching cache size for each workload, but that would have made comparisons very difficult,

and the use of very small or very large cache sizes is not realistic. Moreover, in the case of the workloads

with an unbounded working set size, a working set which completely fits into a cache would be an

artifact of the limited simulation input size and would not reflect realistic program behavior.

7. COMMUNICATION-TO-COMPUTATION RATIO AND SHARING

In this section we discuss how PARSEC workloads use caches to communicate. Most PARSEC

benchmarks share data intensely. Two degrees of sharing can be distinguished: Shared data can be read-

only during the parallel phase, in which case it is only used for lookups and analysis. Input data is

frequently used in such a way. But shared data can also be used for communication between threads, in

which case it is also modified during the parallel phase. In Figure 5 we show how the line size affects

sharing. The data combines the effects of false sharing and the access pattern of the program due to

constrained cache capacity. In Figure 6, we ana-

55.00%

50.00%

45.00%

40.00%

35.00%

30.00%

25.00%

>8 Sharers

8 Sharers

7 Sharers

6 Sharers

5 Sharers

4 Sharers

3 Sharers

2 Sharers

S
h
a
re

d
 L

in
e
s
 (

%
)

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 372 Copyright @ 2020 Authors

 True Shared

Writes

 True Shared

Reads

Shared Writes

Shared Reads

Private Writes

Private Reads

20.00%

15.00%

10.00%

5.00%

0.00%

bodytrack ferret

blackscholes dedup
freqmine

swaptions

s4

Figure 5: Portion of a 4-way associative cache with 4 MB capacity which is shared by 8 cores. The

line size is varied from 8 to 256 bytes.

5

4

3

2

1

0

blackscholes
canneal
facesim
fluidanimate
streamcluster vips

bodytrack
dup

 ret
freqmine swaptions
x264

Figure 6: Traffic from cache in bytes per instruction for 1 to 16 cores. Data assumes a shared 4-way

associative cache with 64 byte lines.

how the program uses its data. The chart shows what data is accessed and how intensely it is used. The

information is broken down in two orthogonal ways, resulting in four possible types of accesses: Read

and write accesses and accesses to thread-private and shared data. Additionally, we give numbers for true

shared ac- cesses. An access is a true access if the last reference to that line came from another thread.

True sharing does not count repeated accesses by the same thread. It is a useful metric to estimate the

T
ra

ff
ic

(B

y
te

s

/

In

s
tr

.)

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

8

1
6

3
2

6
4

1
2
8

2
5
6

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 373 Copyright @ 2020 Authors

requirements for the cache coherence mechanism of a CMP: A true shared write can trigger a coherence

invalidate or update, and a true shared read might require the replication of data. All programs ex- hibit

very few true shared writes.

Four programs (canneal, facesim, fluidanimate and stream- cluster) showed only trivial amounts of sharing. They
have there- fore not been included in Figure 5. In the case of canneal, this is a result of the small cache
capacity. Most of its large working set is shared and actively worked with by all threads. However, only

a minuscule fraction of it fits into the cache, and the probability that a line is accessed by more than one
thread before it gets re-

placed is very small in practice. With a 256 MB cache, 58% of its cached data is shared. blackscholes
shows a substantial amount of sharing, but almost all its shared data is only accessed by two threads. This

is a side-effect of the parallelization model: At the beginning of the program, the boss threads initializes

the portfolio data before it spawns worker threads which process parts of it in a data-parallel way. As

such, the entire portfolio is shared between the boss thread and its workers, but the worker threads can
process the options independently from each other and do not have to com- municate with each other. ferret

shows a modest amount of data sharing. Like the sharing behavior of canneal, this is caused by severely

constrained cache capacity. ferret uses a database that is scanned by all threads to find entries similar to

the query image. However, the size of the database is practically unbounded, and because threads do not
coordinate their scans with each other it is unlikely that a cache line gets accessed more than once.

bodytrack and freqmine exhibit substantial amounts of sharing due to the fact that threads process the same

data. The strong increase of sharing of freqmine is caused by false sharing, as the program uses an

0.1 1

0.08 0.75

0.05 0.5

0.03 0.25

0 0

blackscholesdedup
freqmine
x264
facesim

streamcluster
bodytrack fluidanimate

swaptions
canneal

ferret
vips

Figure 7: Breakdown of off-chip traffic for 1 to 16 cores. Data assumes a 4-way associative 4 MB

cache with 64 byte lines, allocate- on-store and write-back policy.

array-based tree as its main data structure. Larger cache lines will contain more nodes, increasing the

chance that the line is accessed by multiple threads. vips has some shared data which is mostly used by only

two threads. This is also predominantly an effect of false sharing since image data is stored in a

T
ra

ff
ic

 (
B
y
te

s/
In

st
r.

)

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

1

2

4

8

1
6

Writebacks

 Stores

Loads

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 374 Copyright @ 2020 Authors

consecutive array which is processed in a data-parallel way by threads. x264 uses signifi- cant amounts of

shared data, most of which is only accessed by a low number of threads. This data is the reference

frames, since a thread needs this information from other stages in order to encode the frame it was

assigned. Similarly, the large amount of shared data of dedup is the input which is passed from stage to

stage.
Most PARSEC workloads use a significant amount of commu-

nication, and in many cases the volume of traffic between threads can be so high that efficient data

exchange via a shared cache is severely constrained by its capacity. An example for this is x264. Figure 6
shows a large amount of writes to shared data, but contrary to intuition its share diminishes rapidly as the

number of cores is increased. This effect is caused by a growth of the working sets of x264: Table2

shows that both working set WS1 and WS2 grow proportional to the number of cores. WS1 is mostly

composed of thread-private data and is the one which is used more intensely. WS2 contains the
reference frames and is used for inter-thread communication. As WS1 grows, it starts to displace WS2,

and the threads are forced to communicate via main memory. Two more programs which communicate

intensely are dedup and ferret. Both programs use the pipeline parallelization model with dedi- cated

thread pools for each parallel stage, and all data has to be passed from stage to stage. fluidanimate also
shows a large amount of inter-thread communication, and its communication needs grow as the number of

threads increase. This is caused by the spa- tial partitioning that fluidanimate uses to distribute the work to

threads. Smaller partitions mean a worse surface to volume ratio, and communication grows with the

surface.

Overall, most PARSEC workloads have complex sharing pat- terns and communicate actively.

Pipelined programs can require a large amount of bandwidth between cores in order to communicate

efficiently. Shared caches with insufficient capacity can limit the communication efficiency of

workloads, since shared data struc- tures might get displaced to memory.

8. OFF-CHIP TRAFFIC

In this section we analyze what the off-chip bandwidth require- ments of PARSEC workloads are. Our

goal is to understand how the traffic of an application grows as the number of cores of a CMP increases

and how the memory wall will limit performance. We again simulated a shared cache and analyze how

traffic develops as the number of cores increases. Our results are presented in Fig- ure 7.

The data shows that the off-chip bandwidth requirements of the blackscholes workload are small enough
so that memory band- width is unlikely to be an issue. bodytrack, dedup, fluidani- mate, freqmine, swaptions and
x264 are more demanding. More- over, these programs exhibit a growing bandwidth demand per in-
struction as the number of cores increases. In the case of body- track, most off-chip traffic happens in
short, intense bursts since the off-chip communication predominantly takes place during the edge map
computation. This phase is only a small part of the serial runtime, but on machines with constrained
memory bandwidth it quickly becomes the limiting factor for scalability. The last group of programs is
composed of canneal, facesim, ferret, stream- cluster and vips. These programs have very high bandwidth re-
quirements and also large working sets. canneal shows a decreas- ing demand for data per instruction with
more cores. This behavior is caused by improved data sharing.

It is important to point out that these numbers do not take the in- creasing instruction throughput of a

CMP into account as its num- ber of cores grows. A constant traffic amount in Figure 7 means that the

bandwidth requirements of an application which scales linearly will grow exponentially. Since many

PARSEC workloads have high bandwidth requirements and working sets which exceed con- ventional

caches by far, off-chip bandwidth will be their most se- vere limitation of performance. Substantial

architectural improve- ments are necessary to allow emerging workloads to take full ad- vantage of

larger CMPs.

9. FUTURE WORK

Page limitations forced us to restrict the scope of our study to workload characterization using only

one of the available input sets. Additional work is necessary to establish PARSEC as a ma- ture

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 375 Copyright @ 2020 Authors

benchmark suite. The other available input sets should also be

analyzed and compared for similarity. PARSEC already is a large improvement if age, domains of

included applications and covered parallelization models alone are considered. Any weaknesses in the

spectrum of covered programs which might still exist could be identified with a coverage analysis.

Furthermore, the under- standing of workloads could be further improved if the individual kernels and

phases of the benchmarks are analyzed independently from each other.

10. CONCLUSIONS

The PARSEC benchmark suite is designed to provide parallel programs for the study for CMPs.

PARSEC can be used to drive research efforts by application demands. It focuses on emerging desktop

and server applications and does not have the limitations of other benchmark suites. It is diverse enough to

be considered rep- resentative, it is not skewed towards HPC programs, it uses state- of-art algorithms and

it supports research. In this study we charac- terized the PARSEC workloads to provide the basic

understanding necessary to allow other researchers the effective use of PARSEC for their studies. We

analyzed the parallelization, the working sets and locality, the communication-to-computation ratio and

the off- chip bandwidth requirements of its workloads.

11. ACKNOWLEDGMENTS

First and foremost we would like to acknowledge the many au- thors of the PARSEC benchmark

programs which are too numerous to be listed here. The institutions who contributed the most number of

programs are Intel and Princeton University. Stanford University allowed us to use their code and data for

facesim.
We would like to acknowledge the contribution of the following

individuals: Justin Rattner, Pradeep Dubey, Tim Mattson, Jim Hur- ley, Bob Liang, Horst Haussecker,

Yemin Zhang and Ron Fedkiw. They convinced skeptics and supported us so that a project the size of

PARSEC could succeed.

12. REFERENCES

[1] A. Alameldeen, C. Mauer, M. Xu, P. Harper, M. Martin, and
D. Sorin. Evaluating Non-Deterministic Multi-Threaded Commercial Workloads. In Proceedings of the
Computer Architecture Evaluation using Commercial Workloads, February 2002.

[2] A. Alameldeen and D. Wood. Variability in Architectural Simulations of Multithreaded Workloads.
In Proceedings of the 9th International Symposium on High-Performance Computer Architecture,
February 2003.

[3] P. Banerjee. Parallel algorithms for VLSI computer-aided design. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1994.

[4] J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algorithm. Nature, 324:446–449,
December 1986.

[5] L. Barroso, K. Gharachorloo, and F. Bugnion. Memory System Characterization of Commercial
Workloads. In Proceedings of the 25th International Symposium on Computer Architecture, pages
3–14, June 1998.

[6] C. Bienia, S. Kumar, and K. Li. PARSEC vs. SPLASH-2: A Quantitative Comparison of Two
Multithreaded Benchmark Suites on Chip-Multiprocessors. In Proceedings of the 2008 International
Symposium on Workload Characterization, September 2008.

[7] Black, Fischer, and Scholes. The Pricing of Options and Corporate Liabilities. Journal of Political
Economy, 81:637–659, 1973.

[8] J. Deutscher and I. Reid. Articulated Body Motion Capture by Stochastic Search. International
Journal of Computer Vision, 61(2):185–205, February 2005.

[9] P. Dubey. Recognition, Mining and Synthesis Moves Computers to the Era of Tera.
Technology@Intel Magazine, February 2005.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 376 Copyright @ 2020 Authors

[10] G. Grahne and J. Zhu. Efficiently Using Prefix-trees in Mining Frequent Itemsets. November
2003.

[11] D. Heath, R. Jarrow, and A. Morton. Bond Pricing and the Term Structure of Interest Rates: A
New Methodology for Contingent Claims Valuation. Econometrica, 60(1):77–105, January 1992.

[12] L. Hernquist and N. Katz. TreeSPH - A unification of SPH with the hierarchical tree method. The
Astrophysical Journal Supplement Series, 70:419, 1989.

[13] C. J. Hughes, R. Grzeszczuk, E. Sifakis, D. Kim, S. Kumar, A. P. Selle, J. Chhugani, M. Holliman,
and Y.-K. Chen. Physical Simulation for Animation and Visual Effects: Parallelization and
Characterization for Chip Multiprocessors. SIGARCH Computer Architecture News, 35(2):220–
231, 2007.

[14] A. Jaleel, M. Mattina, and B. Jacob. Last-Level Cache (LLC) Performance of Data-Mining
Workloads on a CMP - A Case Study of Parallel Bioinformatics Workloads. In Proceedings of the
12th International Symposium on High Performance Computer Architecture, February 2006.

[15] M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes. The ALPBench Benchmark Suite for
Complex Multimedia Applications. In Proceedings of the 2005 International Symposium on
Workload Characterization, October 2005.

[16] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Ferret: A Toolkit for Content-Based
Similarity Search of Feature-Rich Data. In Proceedings of the 2006 EuroSys Conference, pages 317–
330, 2006.

[17] K. Martinez and J. Cupitt. VIPS - a highly tuned image processing software architecture. In
Proceedings of the 2005 International Conference on Image Processing, volume 2, pages 574–
577, September 2005.

[18] MediaBench II. http://euler.slu.edu/~fritts/mediabench/.

[19] M. Müller, D. Charypar, and M. Gross. Particle-Based Fluid Simulation for Interactive
Applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 154–159, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics
Association.

[20] R. Narayanan, B. Özisikyilmaz, J. Zambreno, G. Memik, and A. N. Choudhary. MineBench: A
Benchmark Suite for Data Mining Workloads. In Proceedings of the IEEE International Symposium
on Workload Characterization 2006, pages 182–188, 2006.

[21] L. O’Callaghan, A. Meyerson, R. M. N. Mishra, and S. Guha. High-Performance Clustering of
Streams and Large Data Sets. In Proceedings of the 18th International Conference on Data
Engineering, February 2002.

[22] Pin. http://rogue.colorado.edu/pin/.
[23] S. Quinlan and S. D. Venti. A New Approach to Archival Storage. In Proceedings of the USENIX

Conference on File And Storage Technologies, January 2002.

[24] E. Sifakis, I. Neverov, and R. Fedkiw. Automatic Determination of Facial Muscle Activations from
Sparse Motion Capture Marker Data. ACM Transactions on Graphics, 24(3):417–425, 2005.

[25] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the H.264/AVC Video
Coding Standard. IEEE Transactions on Circuits and Systems for Video Technology, 13(7):560–
576, 2003.

[26] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 Programs:
Characterization and Methodological Considerations. In Proceedings of the 22nd International
Symposium on Computer Architecture, pages 24–36, June 1995.

[27] G. Xu. A New Parallel N-Body Gravity Solver: TPM. The Astrophysical Journal Supplement
Series, 98:355, 1995.

[28] T. Y. Yeh, P. Faloutsos, S. Patel, and G. Reinman. ParallAX: An Architecture for Real-Time
Physics. In Proceedings of the 34th International Symposium on Computer Architecture, June
2007.

http://euler.slu.edu/~fritts/mediabench/
http://rogue.colorado.edu/pin/

