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ABSTRACT 

The Princeton Application Repository for Shared-Memory Computers (PARSEC), a benchmark suite for 

research of Chip-Multiprocessors, is introduced and described in this work (CMPs). Multiprocessors have 

already been tested using high-performance computing workloads and a small selection of synchronisation 

techniques. Emerging applications in recognition, mining, and synthesis (RMS), as well as systems 

applications that resemble massively multithreaded commercial programmes, are all included in PARSEC. 

Our analysis demonstrates that the benchmark suite includes a broad range of working sets, locality, data 

sharing, synchronisation, and off-chip traffic. The public can now access the benchmark collection. 

Categories and Subject Descriptors 

D.0 [Software]: [benchmark suite] 

 

General Terms 

Performance, Measurement, Experimentation 

 

Keywords 

benchmark suite, performance measurement, multithreading, shared-memory computers 

 

1. INTRODUCTION 

Benchmarking is the quantitative foundation of computer archi- tecture research. Benchmarks are 

necessary to experimentally de- termine the benefits of new designs. However, to be relevant, a 

benchmark suite needs to satisfy a number of properties. First, the applications in the suite should be 

written with the target class of machines in mind. This is necessary to ensure that the architec- tural 

features being proposed are relevant and not obviated by mi- nor rewrites of the application. Second, the 

benchmark suite should represent the important applications on the target machines. Third, the workloads 

in the benchmark suite should be diverse enough to exhibit the range of behavior of the target 

applications. Finally, it 

is important that the programs use state-of-art algorithms and tech- niques. 

As time passes, the relevance of a benchmark suite diminishes. This happens not only because 

machines evolve and change over time but also because new applications, algorithms, and techniques 

emerge. New benchmark suites become necessary after significant changes in the architectures or 

applications. 

In fact, dramatic changes have occurred both in mainstream pro- cessor designs as well as applications 

in the last few years. The arrival of chip-multiprocessors (CMPs) with ever increasing num- ber of cores 

has made parallel machines ubiquitous. At the same time, new applications are emerging that not only 

organize and cat- alog data on desktops and the Internet but also deliver improved visual experience [9]. 

These technology shifts have galvanized research in parallel ar- chitectures. Such research efforts rely 

on existing benchmark suites. However, the existing suites [15, 14, 20, 28] suffer from a number of 

limitations and are not adequate to evaluate future CMPs (Sec- tion 2). The lack of good benchmark 

suites can hamper parallel architecture research as well as reduce its impact. 



 

 

 

 

Juni Khyat                                                                                         ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                           Vol-10 Issue-1 January 2020 

     Page | 2                                                                                                      Copyright @ 2020 Authors  

To address this problem, we created a publicly available bench- mark suite called PARSEC in 

collaboration with Intel Corporation. It includes not only a number of important RMS applications [9] 

but also several leading-edge applications from Princeton Univer- sity, Stanford University, and the 

open-source domain. The goal is to create a suite of emerging workloads that can drive CMP re- search. 

A recent study [6] quantitatively demonstrated that the character- istics of PARSEC are significantly 

different from SPLASH-2 (one of the most widely used parallel benchmark suites). This suggests that 

using newer benchmark suites like PARSEC is necessary. 

The widely perceived need for such a benchmark suite is proven by the number of researchers who are 

already downloading and using PARSEC. Within the first 6 months of being made publicly available, 

the benchmark suite has been downloaded more than 500 times by researchers throughout the world. The 

first papers using PARSEC have been submitted. 
This paper makes three contributions: 
• It identifies shortcomings of commonly used benchmark suites and explains why they might be less 

relevant to evaluate CMPs (Section 2). 
• We present and characterize PARSEC, a new benchmark suite for CMPs that is diverse enough in 

order to allow representa- tive conclusions (Sections 3 - 8). 
• Based on our characterization of PARSEC, we analyze what properties future CMPs must have in 

order to be able to deliver scalable performance for emerging applications (Sections 6 - 
8). 

 

2. MOTIVATION 

The goal of this work is to define a benchmark suite that can be used to design the next generation of 

processors. In this section, we first present the requirements for such a suite. We then discuss how the 

existing benchmarks fail to meet these requirements. 

 Requirements for a Benchmark Suite 

We have the following five requirements for a benchmark suite: Multithreaded Applications Shared-

memory CMPs are already ubiquitous. The trend for future processors is to deliver large performance 

improvements through increasing core counts on CMPs while only providing modest serial performance 

im- provements. Consequently, applications that require additional 

processing power will need to be parallel. 

Emerging Workloads Rapidly increasing processing power is en- abling a new class of applications 

whose computational re- quirements were beyond the capabilities of the earlier genera- tion of 

processors [9]. Such applications are significantly dif- ferent from earlier applications (see Section 3). 

Future proces- sors will be designed to meet the demands of these emerging applications and a 

benchmark suite should represent them. 

Diverse Applications are increasingly diverse, run on a variety of platforms and accommodate different 

usage models. They in- clude both interactive applications like computer games, of- fline applications 

like data mining programs and programs with different parallelization models. Specialized collections 

of benchmarks can be used to study some of these areas in more detail, but decisions about general-

purpose processors should be based on a diverse set of applications. 

Employ State-of-Art Techniques A number of application areas have changed dramatically over the last 

decade and use very different algorithms and techniques. Visual applications for example have started 

to increasingly integrate physics simula- tions to generate more realistic animations [13]. A benchmark 

should not only represent emerging applications but also use state-of-art techniques. 

Support Research A benchmark suite intended for research has additional requirements compared to one 

used for benchmark- ing real machines alone. Benchmark suites intended for re- search usually go 

beyond pure scoring systems and provide infrastructure to instrument, manipulate, and perform 

detailed simulations of the included programs in an efficient manner. 

 Limitations of Existing Benchmark Suites 
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In the remaining part of this section we analyze how existing benchmark suites fall short of the 

presented requirements and must thus be considered unsuitable for evaluating CMP performance. 

SPLASH-2 SPLASH-2 is a suite composed of multithreaded ap- plications [26] and hence seems to be an 

ideal candidate to measure performance of CMPs. However, its program collec- tion is skewed towards 

HPC and graphics programs. It thus does not include parallelization models such as the pipeline 

model which are used in other application areas. SPLASH- 2 should furthermore not be considered 

state-of-art anymore. Barnes for example implements the Barnes-Hut algorithm for N-body simulation 

[4]. For galaxy simulations it has largely been superseded by the TreeSPH [12] method, which can also 

account for mass such as dark matter which is not concen- trated in bodies. However, even for pure 

N-body simulation barnes must be considered outdated. In 1995 Xu proposed a hybrid algorithm which 

combines the hierarchical tree algo- rithm and the Fourier-based Particle-Mesh (PM) method to the 

superior TreePM method [27]. Our analysis shows that simi-lar issues exist for a number of other 

applications of the suite including raytrace and radiosity. 
SPEC CPU2006 and OMP2001 SPEC CPU2006 and SPEC 

OMP2001 are two of the largest and most significant collec- tions of benchmarks. They provide a 

snapshot of current sci- entific and engineering applications. Computer architecture research, 

however, commonly focuses on the near future and should thus also consider emerging applications. 

Workloads such as systems programs and parallelization models which employ the producer-

consumer model are not included. SPEC CPU2006 is furthermore a suite of serial programs that is 

not intended for studies of parallel machines. 

Other Benchmark Suites Besides these major benchmark suites, several smaller workload collections 

exist. They were usu- ally designed to study a specific program area and are thus limited to a single 

application domain. Therefore they usu- ally include a smaller set of applications than a diverse 

bench- mark suite typically offers. Due to these limitations they are commonly not used for scientific 

studies which do not restrict themselves to the covered application domain. Examples for these types 

of benchmark suites are ALPBench [15], BioPar- allel [14], MediaBench [18], MineBench [20] and 

Physics- Bench [28]. Because of their different focus we do not discuss these suites in more detail. 

 

3. THE PARSEC BENCHMARK SUITE 

One of the goals of the PARSEC suite was to assemble a pro- gram selection that is large and diverse 

enough to be sufficiently representative for scientific studies. It consists of 9 applications and 3 kernels 

which were chosen from a wide range of application domains. PARSEC workloads were selected to 

include different combinations of parallel models, machine requirements and run- time behaviors. All 

benchmarks are written in C/C++ because of the continuing popularity of these languages in the near 

future. 
PARSEC meets all the requirements outlined in Section 2.1: 
• Each of the applications has been parallelized. 
• The PARSEC benchmark suite is not skewed towards HPC programs, which are abundant but 

represent only a niche. It 
focuses on emerging workloads. 

• The workloads are diverse and were chosen from many dif- ferent areas such as computer vision, 
media processing, com- 

putational finance, enterprise servers and animation physics. PARSEC is more diverse than 

SPLASH-2 [6]. 
• Each of the applications chosen represents the state-of-art tech- nique in its area. 
• PARSEC supports computer architecture research in a number of ways. The most important one is 

that for each workload six input sets with different properties are defined (Section 3.1). 

The characteristics of the included workloads differ substantially from SPLASH-2 [6]. Recent 

technology trends such as the emer- gence of CMPs and the growth of world data seem to have a strong 

impact on workload behavior. 

 Input Sets 



 

 

 

 

Juni Khyat                                                                                         ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                           Vol-10 Issue-1 January 2020 

     Page | 4                                                                                                      Copyright @ 2020 Authors  

PARSEC defines six input sets for each benchmark: 

test A very small input set to test the basic functionality of the program. 

simdev A very small input set which guarantees basic program behavior similar to the real behavior, 

intended for simulator test and development. 

simsmall, simmedium and simlarge Input sets of different sizes suitable for simulations. 

native A large input set intended for native execution. 

 

Program Problem Size 
Instructions (Billions) Synchronization 

Primitives 
Tot
al 

FLO
PS 

Rea
ds 

Writ
es 

Locks Barrie
rs 

Conditi
ons 

blackscholes 65,536 options 2.67 1.14 0.68 0.19 0 8 0 
bodytrack 4 frames, 4,000 

particles 
14.0

3 
4.22 3.63 0.95 114,621 619 2,042 

canneal 400,000 elements 7.33 0.48 1.94 0.89 34 0 0 
dedup 184 MB data 37.1 0 11.7

1 
3.13 158,979 0 1,619 

facesim 1 frame, 
372,126 tetrahedra 

29.9
0 

9.10 10.0
5 

4.29 14,541 0 3,137 

ferret 256 queries, 
34,973 images 

23.9
7 

4.51 7.49 1.18 345,778 0 1255 

fluidanimate 5 frames, 
300,000 particles 

14.0
6 

2.49 4.80 1.15 17,771,9
09 

0 0 

freqmine 990,000 
transactions 

33.4
5 

0.00 11.3
1 

5.24 990,025 0 0 

streamcluster 16,384 points per 
block, 
1 block 

22.1
2 

11.6 9.42 0.06 191 129,60
0 

127 

swaptions 64 swaptions, 
20,000 simulations 

14.1
1 

2.62 5.08 1.16 23 0 0 

vips 1 image, 
2662 × 5500 pixels 

31.2
1 

4.79 6.71 1.63 33,586 0 6,361 

x264 128 frames, 
640 × 360 pixels 

32.4
3 

8.76 9.01 3.11 16,767 0 1,056 

 

Table 1: Breakdown of instructions and synchronization primitives for input set simlarge on a 

system with 8 cores.  All numbers are totals across all threads. Numbers for synchronization 

primitives also include primitives in system libraries. "Locks" and "Barriers" are all lock- and 

barrier-based synchronizations, "Conditions" are all waits on condition variables. 

 

test and simdev are merely intended for testing and develop- ment and should not be used for scientific 

studies. The three sim- ulator inputs for studies vary in size, but the general trend is that larger input sets 
contain bigger working sets and more parallelism. Finally, the native input set is intended for performance 

measure- ments on real machines and exceeds the computational demands which are generally considered 

feasible for simulation by orders of magnitude. Table 1 shows a breakdown of instructions and syn- 

chronization primitives of the simlarge input set which we used for the characterization study. 

 Workloads 

The following workloads are part of the PARSEC suite: 

blackscholes This application is an Intel RMS benchmark. It cal- culates the prices for a portfolio of 

European options ana- lytically with the Black-Scholes partial differential equation (PDE) [7]. There 

is no closed-form expression for the Black- Scholes equation and as such it must be computed numeri- 

cally. 

bodytrack This computer vision application is an Intel RMS work- load which tracks a human body with 

multiple cameras through an image sequence [8]. This benchmark was included due to the increasing 

significance of computer vision algorithms in areas such as video surveillance, character animation 
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and computer interfaces. 

canneal This kernel was developed by Princeton University. It uses cache-aware simulated annealing 

(SA) to minimize the routing cost of a chip design [3]. Canneal uses fine-grained parallelism with a lock-

free algorithm and a very aggressive synchronization strategy that is based on data race recovery 

instead of avoidance. 

dedup This kernel was developed by Princeton University. It com- presses a data stream with a 

combination of global and local compression that is called ’deduplication’. The kernel uses a 

pipelined programming model to mimic real-world imple- mentations. The reason for the inclusion 

of this kernel is that deduplication has become a mainstream method for new- generation backup 

storage systems [23]. 

facesim This Intel RMS application was originally developed by Stanford University. It computes a 

visually realistic animation of the modeled face by simulating the underlying physics [24]. The 

workload was included in the benchmark suite because an increasing number of animations employ 

physical simulation to create more realistic effects. 

ferret This application is based on the Ferret toolkit which is used for content-based similarity search 

[16]. It was developed by Princeton University. The reason for the inclusion in the benchmark suite 

is that it represents emerging next-generation search engines for non-text document data types. In the 

bench- mark, we have configured the Ferret toolkit for image similar- ity search. Ferret is parallelized 

using the pipeline model. 

fluidanimate This Intel RMS application uses an extension of the Smoothed Particle Hydrodynamics 

(SPH) method to simulate an incompressible fluid for interactive animation purposes [19]. It was 

included in the PARSEC benchmark suite because of the increasing significance of physics 

simulations for anima- tions. 

freqmine This application employs an array-based version of the FP-growth (Frequent Pattern-growth) 

method [10] for Frequent Itemset Mining (FIMI). It is an Intel RMS benchmark which was originally 

developed by Concordia University. freqmine was included in the PARSEC benchmark suite because of 

the increasing use of data mining techniques. 
streamcluster This RMS kernel was developed by Princeton Uni- versity and solves the online clustering 

problem [21]. stream- cluster was included in the PARSEC benchmark suite be- cause of the importance 
of data mining algorithms and the prevalence of problems with streaming characteristics. 

swaptions The application is an Intel RMS workload which uses the Heath-Jarrow-Morton (HJM) 

framework to price a portfo- lio of swaptions [11]. Swaptions employs Monte Carlo (MC) simulation to 
compute the prices. 

 

vips This application is based on the VASARI Image Processing System (VIPS) [17] which was 

originally developed through several projects funded by European Union (EU) grants. The benchmark 

version is derived from a print on demand service that is offered at the National Gallery of London, 

which is also the current maintainer of the system. The benchmark includes fundamental image 

operations such as an affine transforma- tion and a convolution. 

x264 This application is an H.264/AVC (Advanced Video Coding) video encoder. H.264 describes the 

lossy compression of a video stream [25] and is also part of ISO/IEC MPEG-4. The flexibility and 

wide range of application of the H.264 stan- dard and its ubiquity in next-generation video systems 

are the reasons for the inclusion of x264 in the PARSEC benchmark suite. 

 

4. METHODOLOGY 

In this section we explain how we characterized the PARSEC benchmark suite. We are interested in 

the following characteristics: Parallelization PARSEC benchmarks use different parallel mod- els which 

have to be analyzed in order to know whether the programs can scale well enough for the analysis of 

CMPs of a 



 

 

 

 

Juni Khyat                                                                                         ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                           Vol-10 Issue-1 January 2020 

     Page | 6                                                                                                      Copyright @ 2020 Authors  

certain size. 

Working sets and locality Knowledge of the cache requirements of a workload are necessary to identify 

benchmarks suitable for the study of CMP memory hierarchies. 

Communication-to-computation ratio and sharing The commu- nication patterns of a program 

determine the potential impact of private caches and the on-chip network on performance. 

Off-chip traffic The off-chip traffic requirements of a program are important to understand how off-chip 

bandwidth limitations of a CMP can affect performance. 

In order to characterize all applications, we had to make several trade-off decisions. Given a limited 

amount of computational re- sources, higher accuracy comes at the expense of a lower number of 

experiments. We followed the approach of similar studies [26, 14] and chose faster but less accurate 

execution-driven simulation to characterize the PARSEC workloads. This approach is feasible be- cause 

we limit ourselves to study fundamental program properties which should have a high degree of 

independence from architec- tural details. Where possible we supply measurement results from real 

machines. This methodology allowed us to gather the large amount of data which we present in this 

study. We preferred ma- chine models comparable to real processors over unrealistic models which might 

have been a better match for the program needs. 

 Experimental Setup 

We used CMP$im [14] for our workload characterization. CMP- 

$im is a plug-in for Pin [22] that simulates the cache hierarchy of a CMP. Pin is similar to the ATOM 

toolkit for Compaq’s Tru64 Unix on Alpha processors. It uses dynamic binary instrumentation to insert 

routines at arbitrary points in the instruction stream. For the characterization we simulate a single-level 

cache hierarchy of a CMP and vary its parameters. The baseline cache configuration was a shared 4-way 

associative cache with 4 MB capacity and 64 byte lines. By default the workloads used 8 cores. All 

experiments were conducted on a set of Symmetric Multiprocessor (SMP) ma- chines with x86 processors 

and Linux. The programs were com- piled with gcc 4.2.1. 
Because of the large computational cost we could not perform 

simulations with the native input set, instead we used the simlarge inputs for all simulations and analytically 
describe any differences between the two sets of which we know. 

 Methodological Limitations and Error Margins 

For their characterization of the SPLASH-2 benchmark suite, Woo et al. fixed a timing model which 

they used for all experi- ments [26]. They give two reasons: First, nondeterministic pro- grams would 

otherwise be difficult to compare because different execution paths could be taken, and second, the 

characteristics they study are largely independent from an architecture. They also state that they believe 

that the timing model should have only a small im- pact on the results. While we use similar 

characteristics and share this belief, we think a characterization study of multithreaded pro- grams 

should nevertheless analyze the impact of nondeterminism on the reported data. Furthermore, because 

our methodology is based on execution on real machines combined with dynamic bi- nary 

instrumentation, it can introduce additional latencies, and a potential concern is that the nondeterministic 

thread schedule is al- tered in a way that might affect our results in unpredictable ways. We therefore 

conducted a sensitivity analysis to quantify the impact of nondeterminism. 

Alameldeen and Wood studied the variability of nondetermin- istic programs in more detail and 

showed that even small pseudo- random perturbations of memory latencies are effective to force 

alternate execution paths [2]. We adopted their approach and modi- fied CMP$im to add extra delays to 

its analysis functions. Because running all experiments multiple times as Alameldeen and Wood did 

would be prohibitively expensive, we instead decided to ran- domly select a subset of all experiments 

for each metric which we use and report its error margins. 
The measured quantities deviated by no more than ±0.04% from the average, with the following two 

exceptions. The first excpetion 

is metrics of data sharing. In two cases (bodytrack and swaptions) the classification is noticeably affected by 
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the nondeterminism of the program. This is partially caused because shared and thread- private data 

contend aggressively for a limited amount of cache ca- pacity. The high frequency of evictions made it 

difficult to classify lines and accesses as shared or private. In these cases, the maxi- 
mum deviation of the number of accesses from the average was as high as ±4.71%, and the amount of 
sharing deviated by as much as 
±15.22%. We considered this uncertainty in our study and did not 
draw any conclusions where the variation of the measurements did 
not allow it. The second case of high variability is when the value of the measured quantity is very low 

(below 0.1% miss rate or cor- responding ratio). In these cases the nondeterministic noise made 

measurements difficult. We do not consider this a problem because in this study we focus on trends of 

ratios, and quantities that small do not have a noticeable impact. It is however an issue for the anal- ysis of 

working sets if the miss rate falls below this threshold and continues to decrease slowly. Only few 

programs are affected, and our estimate of their working set sizes might be slightly off in these cases. This 

is primarily an issue inherent to experimental work- ing set analysis, since it requires well-defined 

points of inflection for conclusive results. Moreover, we believe that in these cases the working set size 

varies nondeterministically, and researchers should expect slight variations for each benchmark run. 

The implications of these results are twofold: First, they show that our methodology is not susceptible 

to the nondeterministic effects of multithreaded programs in a way that might invalidate our findings. 

Second, they also confirm that the metrics which we present in this paper are fundamental program 

properties which cannot be distorted easily. The reported application characteristics are likely to be 

preserved on a large range of architectures. 
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Figure 1: Upper bound for speedup of PARSEC workloads based on instruction count. 
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Figure 2: Parallelization overhead of PARSEC benchmarks. The chart shows the slowdown of the 

parallel version on 1 core over the serial version. 

 

 

5. PARALLELIZATION 

In this section we discuss the parallelization of the PARSEC suite. As we will see in Section 6, several 

PARSEC benchmarks (canneal, dedup, ferret and freqmine) have working sets so large they should be 

considered unbounded for an analysis. These working sets are only limited by the amount of main 

memory in practice and they are actively used for inter-thread communication. The inability to use caches 

efficiently is a fundamental property of these program and affects their concurrent behavior. Furthermore, 

dedup and ferret use a complex, heterogeneous parallelization model in which specialized threads execute 

different functions with different characteristics at the same time. These programs employ a pipeline with 

dedicated thread pools for each parallelized pipeline stage. Each thread pool has enough threads to occupy 

the whole CMP, and it is the responsibility of the scheduler to assign cores to threads in a manner that 

maximizes the overall throughput of the pipeline. Over time, the number of threads active for each stage 

will converge against the inverse throughput ratios of the individual pipeline stages relative to each other. 

Woo et al. use an abstract machine model with a uniform instruc- tion latency of one cycle to measure 

the speedups of the SPLASH-2 programs [26]. They justify their approach by pointing out that the impact 

of the timing model on the characteristics which they mea- sure - including speedup - is likely to be low. 

Unfortunately, this is not true in general for PARSEC workloads. While we have veri- fied in Section 4.2 

that the fundamental program properties such as miss rate and instruction count are largely not 

susceptible to tim- ing shocks, the synchronization and timing behavior of the pro- grams is. Using a 

timing model with perfect caches significantly alters the behavior of programs with unbounded working 

sets, for example how long locks to large, shared data structures are held. Moreover, any changes of the 

timing model have a strong impact on the number of active threads of programs which employ thread 

specialization. It will thus affect the load balance and synchroniza- tion behavior of these workloads. We 

believe it is not possible to discuss the timing behavior of these programs without also consid- ering for 

example different schedulers, which is beyond the scope of this paper. Similar dependencies of 

commercial workloads on their environment are already known [5, 1]. 

Unlike Woo et al. who measured actual concurrency on an ab- stract machine, we therefore decided to 

analyze inherent concur- rency and its limitations. Our approach is based on the number of executed 

instructions in parallel and serial regions of the code. We neglect any delays due to blocking on 
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contended locks and load imbalance. This methodology is feasible because we do not study 

performance, our interest is in fundamental program charac- teristics. The presented data is largely 

timing-independent and a suitable measure of the concurrency inherent in a workload. The results in 

Figure 1 show the maximum achievable speedup mea- sured that way. The numbers account for 

limitations such as unpar- allelized code sections, synchronization overhead and redundant 

computations. PARSEC workloads can achieve actual speedups close to the presented numbers. We 

verified on a large range of architectures that lock contention and other timing-dependent fac- tors are 

not limiting factors, but we know of no way to show it in a platform-independent way given the 

complications outlined above. The maximum speedup of bodytrack, x264 and streamcluster is limited by serial 

sections of the code. fluidanimate is primar- ily limited by growing parallelization overhead. On real 

machines, x264 is furthermore bound by a data dependency between threads, however this has only a 

noticeable impact on machines larger than the ones described here. It is recommended to run x264 with 

more threads than cores, since modeling and exposing these dependen- cies to the scheduler is a 

fundamental aspect of its parallel algo- rithm, comparable to the parallel algorithms of dedup and ferret. 

Figure 2 shows the slowdown of the parallel version on 1 core over the serial version. The numbers show 

that all workloads use effi- cient parallel algorithms which are not substantially slower than the 

corresponding serial algorithms. 

PARSEC programs scale well enough to study CMPs. We be- lieve they are also useful on machines 

larger than the ones analyzed here. The PARSEC suite exhibits a wider variety of parallelization models 

than previous benchmark suites such as the pipeline model. Some of its workloads can adapt to different 

timing models and can use threads to hide latencies. It is important to analyze these programs in the 

context of the whole system. 

 

6. WORKING SETS AND LOCALITY 

The temporal locality of a program can be estimated by analyz- ing how the miss rate of a processor’s 

cache changes as its capacity is varied. Often the miss rate does not decrease continuously as the size of a 

cache is increased, but stays on a certain level and then 
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Figure 3: Miss rates versus cache size. Data assumes a shared 4-way associative cache with 64 

byte lines. WS1 and WS2 refer to important working sets which we analyze in more detail in Table 

2. Cache requirements of PARSEC benchmark programs can reach hundreds of megabytes. 
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vips image 
data 

64 
KB 

C image data 16 
MB 

C same 

x264 macroblo
cks 

128 
KB 

C reference 
frames 

16 
MB 

C same 

 

Table 2: Important working sets and their growth rates. DS represents the data set size and C is 

the number of cores. Working set sizes are taken from Figure 3. Values for native input set are 

analytically derived estimates. Working sets that grow proportional to the number of cores C are 

aggregated private working sets and can be split up to fit into correspondingly smaller, private 

caches. 
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Figure 4: Miss rates as a function of line size. Data assumes 8 cores sharing a 4-way associative 

cache with 4 MB capacity. Miss rates are broken down to show the effect of loads and stores. 
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data structure. For CMPs an efficient functioning of the last cache level on the chip is crucial because a 

miss in the last level will require an access to off-chip memory. 

To analyze the working sets of the PARSEC workloads we stud- ied a cache shared by all processors. 

Our results are presented in Figure 3. In Table 2 we summarize the important characteris- tics of the 

identified working sets. Most workloads exhibit well- defined working sets with clearly identifiable points 

of inflection. Compared to SPLASH-2, PARSEC working sets are significantly larger and can reach 

hundreds of megabytes such as in the cases of canneal and freqmine. 
Two types of workloads can be distinguished: The first group 

contains benchmarks such as bodytrack and swaptions which have working sets no larger than 16 MB. These 
workloads have a limited need for caches with a bigger capacity, and the latest gen- eration of CMPs 

often already has caches sufficiently large to ac- commodate most of their working sets. The second group 

of work- loads is composed of the benchmarks canneal, ferret, facesim, fluidanimate and freqmine. These programs 

have very large working sets of sizes 65 MB and more, and even with a relatively constrained input set 
such as simlarge, their working sets can reach hundreds of megabytes. Moreover, the need of those work- 

loads for cache capacity is nearly insatiable and grows with the amount of data which they process. In 

Table 2 we give our esti- mates for the largest working set of each PARSEC workload for the native input 
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set. In several cases they are significantly larger and can even reach gigabytes. These large working sets are 
often the consequence of an algorithm that operates on large amounts of collected input data. ferret for 

example keeps a data base of fea- ture vectors of images in memory to find the images most similar to a 

given query image. The cache and memory needs of these ap- plications should be considered unbounded, 

as they become more useful to their users if they can work with increased amounts of data. Programs with 

unbounded working sets are canneal, dedup, ferret and freqmine. 
In Figure 4 we present our analysis of the spatial locality of the 

PARSEC workloads. The data shows how the miss rate of a shared cache changes with line size. All 

programs benefit from larger cache lines, but to different extents. facesim, fluidanimate and 

streamcluster show the greatest improvement as the line size is increased, up to the the maximum value of 

256 bytes which we used. These programs have streaming behavior, and an increased line size has a 

prefetching effect which these workloads can take advantage of. facesim for example spends most of its 

time updat- ing the position-based state of the model, for which it employs an it- erative Newton-Raphson 

algorithm. The algorithm iterates over the elements of a sparse matrix which is stored in two one-

dimensional arrays, resulting in a streaming behavior. All other programs also show good improvement 

of the miss rate with larger cache lines, but only up to line sizes of about 128 bytes. The miss rate is not 

substantially reduced with larger lines. This is due to a limited size of the basic data structures employed 

by the programs. They rep- resent independent logical units, each of which is intensely worked with 

during a computational phase. For example, x264 operates on 
macroblocks of 8 × 8 pixels at a time, which limits the sizes of the 
used data structures. Processing a macroblock is computationally 
intensive and largely independent from other macroblocks. Conse- quently, the amount of spatial locality 

is bounded in these cases. 

For the rest of our analysis we chose a cache capacity of 4 MB for all experiments.   We could have 

used a matching cache size for each workload, but that would have made comparisons very difficult, 

and the use of very small or very large cache sizes is not realistic. Moreover, in the case of the workloads 

with an unbounded working set size, a working set which completely fits into a cache would be an 

artifact of the limited simulation input size and would not reflect realistic program behavior. 

 

7. COMMUNICATION-TO-COMPUTATION RATIO AND SHARING 

In this section we discuss how PARSEC workloads use caches to communicate. Most PARSEC 

benchmarks share data intensely. Two degrees of sharing can be distinguished: Shared data can be read-

only during the parallel phase, in which case it is only used for lookups and analysis. Input data is 

frequently used in such a way. But shared data can also be used for communication between threads, in 

which case it is also modified during the parallel phase. In Figure 5 we show how the line size affects 

sharing. The data combines the effects of false sharing and the access pattern of the program due to 

constrained cache capacity. In Figure 6, we ana- 
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Figure 5: Portion of a 4-way associative cache with 4 MB capacity which is shared by 8 cores. The 

line size is varied from 8 to 256 bytes. 
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information is broken down in two orthogonal ways, resulting in four possible types of accesses: Read 

and write accesses and accesses to thread-private and shared data. Additionally, we give numbers for true 

shared ac- cesses. An access is a true access if the last reference to that line came from another thread. 

True sharing does not count repeated accesses by the same thread. It is a useful metric to estimate the 
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requirements for the cache coherence mechanism of a CMP: A true shared write can trigger a coherence 

invalidate or update, and a true shared read might require the replication of data. All programs ex- hibit 

very few true shared writes. 

Four programs (canneal, facesim, fluidanimate and stream- cluster) showed only trivial amounts of sharing. They 
have there- fore not been included in Figure 5. In the case of canneal, this is a result of the small cache 
capacity. Most of its large working set is shared and actively worked with by all threads. However, only 

a minuscule fraction of it fits into the cache, and the probability that a line is accessed by more than one 
thread before it gets re- 

placed is very small in practice. With a 256 MB cache, 58% of its cached data is shared. blackscholes 
shows a substantial amount of sharing, but almost all its shared data is only accessed by two threads. This 

is a side-effect of the parallelization model: At the beginning of the program, the boss threads initializes 

the portfolio data before it spawns worker threads which process parts of it in a data-parallel way. As 

such, the entire portfolio is shared between the boss thread and its workers, but the worker threads can 
process the options independently from each other and do not have to com- municate with each other. ferret 

shows a modest amount of data sharing. Like the sharing behavior of canneal, this is caused by severely 

constrained cache capacity. ferret uses a database that is scanned by all threads to find entries similar to 

the query image. However, the size of the database is practically unbounded, and because threads do not 
coordinate their scans with each other it is unlikely that a cache line gets accessed more than once. 

bodytrack and freqmine exhibit substantial amounts of sharing due to the fact that threads process the same 

data. The strong increase of sharing of freqmine is caused by false sharing, as the program uses an 
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Figure 7: Breakdown of off-chip traffic for 1 to 16 cores. Data assumes a 4-way associative 4 MB 

cache with 64 byte lines, allocate- on-store and write-back policy. 

array-based tree as its main data structure. Larger cache lines will contain more nodes, increasing the 

chance that the line is accessed by multiple threads. vips has some shared data which is mostly used by only 

two threads. This is also predominantly an effect of false sharing since image data is stored in a 
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consecutive array which is processed in a data-parallel way by threads. x264 uses signifi- cant amounts of 

shared data, most of which is only accessed by a low number of threads. This data is the reference 

frames, since a thread needs this information from other stages in order to encode the frame it was 

assigned. Similarly, the large amount of shared data of dedup is the input which is passed from stage to 

stage. 
Most PARSEC workloads use a significant amount of commu- 

nication, and in many cases the volume of traffic between threads can be so high that efficient data 

exchange via a shared cache is severely constrained by its capacity. An example for this is x264. Figure 6 
shows a large amount of writes to shared data, but contrary to intuition its share diminishes rapidly as the 

number of cores is increased. This effect is caused by a growth of the working sets of x264: Table2 

shows that both working set WS1 and WS2 grow proportional to the number of cores. WS1 is mostly 

composed of thread-private data and is the one which is used more intensely. WS2 contains the 
reference frames and is used for inter-thread communication. As WS1 grows, it starts to displace WS2, 

and the threads are forced to communicate via main memory. Two more programs which communicate 

intensely are dedup and ferret. Both programs use the pipeline parallelization model with dedi- cated 

thread pools for each parallel stage, and all data has to be passed from stage to stage. fluidanimate also 
shows a large amount of inter-thread communication, and its communication needs grow as the number of 

threads increase. This is caused by the spa- tial partitioning that fluidanimate uses to distribute the work to 

threads. Smaller partitions mean a worse surface to volume ratio, and communication grows with the 

surface. 

Overall, most PARSEC workloads have complex sharing pat- terns and communicate actively. 

Pipelined programs can require a large amount of bandwidth between cores in order to communicate 

efficiently. Shared caches with insufficient capacity can limit the communication efficiency of 

workloads, since shared data struc- tures might get displaced to memory. 

8. OFF-CHIP TRAFFIC 

In this section we analyze what the off-chip bandwidth require- ments of PARSEC workloads are. Our 

goal is to understand how the traffic of an application grows as the number of cores of a CMP increases 

and how the memory wall will limit performance. We again simulated a shared cache and analyze how 

traffic develops as the number of cores increases. Our results are presented in Fig- ure 7. 

The data shows that the off-chip bandwidth requirements of the blackscholes workload are small enough 
so that memory band- width is unlikely to be an issue. bodytrack, dedup, fluidani- mate, freqmine, swaptions and 
x264 are more demanding. More- over, these programs exhibit a growing bandwidth demand per in- 
struction as the number of cores increases. In the case of body- track, most off-chip traffic happens in 
short, intense bursts since the off-chip communication predominantly takes place during the edge map 
computation. This phase is only a small part of the serial runtime, but on machines with constrained 
memory bandwidth it quickly becomes the limiting factor for scalability. The last group of programs is 
composed of canneal, facesim, ferret, stream- cluster and vips. These programs have very high bandwidth re- 
quirements and also large working sets. canneal shows a decreas- ing demand for data per instruction with 
more cores. This behavior is caused by improved data sharing. 

It is important to point out that these numbers do not take the in- creasing instruction throughput of a 

CMP into account as its num- ber of cores grows. A constant traffic amount in Figure 7 means that the 

bandwidth requirements of an application which scales linearly will grow exponentially. Since many 

PARSEC workloads have high bandwidth requirements and working sets which exceed con- ventional 

caches by far, off-chip bandwidth will be their most se- vere limitation of performance. Substantial 

architectural improve- ments are necessary to allow emerging workloads to take full ad- vantage of 

larger CMPs. 

 

9. FUTURE WORK 

Page limitations forced us to restrict the scope of our study to workload characterization using only 

one of the available input sets. Additional work is necessary to establish PARSEC as a ma- ture 
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benchmark suite. The other available input sets should also be 

analyzed and compared for similarity. PARSEC already is a large improvement if age, domains of 

included applications and covered parallelization models alone are considered. Any weaknesses in the 

spectrum of covered programs which might still exist could be identified with a coverage analysis. 

Furthermore, the under- standing of workloads could be further improved if the individual kernels and 

phases of the benchmarks are analyzed independently from each other. 

 

10. CONCLUSIONS 

The PARSEC benchmark suite is designed to provide parallel programs for the study for CMPs. 

PARSEC can be used to drive research efforts by application demands. It focuses on emerging desktop 

and server applications and does not have the limitations of other benchmark suites. It is diverse enough to 

be considered rep- resentative, it is not skewed towards HPC programs, it uses state- of-art algorithms and 

it supports research. In this study we charac- terized the PARSEC workloads to provide the basic 

understanding necessary to allow other researchers the effective use of PARSEC for their studies. We 

analyzed the parallelization, the working sets and locality, the communication-to-computation ratio and 

the off- chip bandwidth requirements of its workloads. 
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