
3

9

6

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 396 Copyright @ 2020 Authors

COHERENCE OF LIBRARY CACHES

Mr. Bijay Kumar Sahoo
1
*, Mr.Alok Kumar Pattnaik

2

1
*Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR
2
Assistant Professor,Dept. Of Computer Science and Engineering, NIT , BBSR

 bijaykumar@thenalanda.com*, alokkumar@thenalanda.com

Abstract— An effective approach for chip multiprocessors and multicores is directory-based cache

coherence. The collection of acknowledgement messages and invocation messages for the directory

protocol, however, need multicast, which can be expensive in terms of latency and network traffic.

Furthermore, as the number of cores rises, so does the directory's size. We offer Library Cache

Coherence (LCC), which eliminates the need for invalidation acknowledgements or broadcasting or

multicasting invalidations. A library is a collection of timestamps that are used to delay writing to

shared cache lines until all shared copies have expired and to automatically invalidate shared cache

lines. The number of cores has no bearing on the size of the library. LCC produces fewer network

messages since it does away with the intricate invalidation procedure of directory-based cache

coherence protocols. When a write to a cache block is being delayed, LCC also permits reads on the

block to occur without compromising sequential consistency. Consequently, even with a

straightforward timestamp selection algorithm, LCC has 1.85X less average memory latency than a

MESI directory-based protocol on our set of benchmarks; additionally, our experimental results on

LCC with an ideal timestamp scheme (though not implementable) show the potential

I. INTRODUCTION

With the demise of Dennard scaling, the increase in processor clock frequencies from 1980-2003 has

slowed down significantly [1]. To improve performance, archi- tects are exploring many parallel

architectures includ- ing manycore architectures in academia (e.g., Raw [2], TRIPS [3]) and industry (e.g.,

Tilera [4], Intel Ter- aFLOPS [5]). In a manycore or multi-core architecture, cores with relatively low

complexity are connected to memory and each other via high-bandwidth on-chip interconnect.

How will these multicores be programmed? Amongst many different types of parallel programming

models, message passing and shared memory are the most dom- inant ones. Some multicores, for example,

the Tilera Tile-Gx 100 provide a shared memory abstraction to the programmer, while other architectures

like Intel

1equal contributors

TeraFLOPS rely on message passing. Message passing is a very efficient programming model for certain

types of applications, such as scientific computation. However, many programs and operating systems are

based on the shared memory abstraction, so it is indispensable for general-purpose multicores to

support the shared memory abstraction.

On-chip cache memory cannot be directly imple- mented as a single large cache primarily because the

energy consumption of caches grows quadratically with cache size, and because the number of read and

write ports do not scale with the number of cores. To maintain performance, we need distributed caches

that behave like a logically shared cache.

A. Directory-Based Cache Coherence (DirCC) Architec- ture

When we consider a two-level on-chip cache hierar- chy for a tiled multicore architecture, there are

many choices in implementing a logically shared cache. One of the most common approaches in modern

multicore processors is to implement a private L1 cache and a shared L2 cache slice for each core (e.g.,

Tilera’s 64- core processor [4], Cavium Octeon 32-core processor). A shared L2 cache architecture

mailto:alokkumar@thenalanda.com

3

9

7

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 397 Copyright @ 2020 Authors

unifies the per-core L2 cache slices into one large logically shared cache, and a memory address has a

unique location where it can be cached on-chip, which is termed the home cache for the address.

Therefore, data can be replicated in L1 but not in L2. On an L1 miss, the home L2 cache, where the

data block may be located, needs to be looked up; the home can be a local L2 cache if the address is

mapped to the requesting core’s cache (core hit), or a remote L2 cache if the core is not the home

for the address (core miss). While these remote accesses may lead to a higher average L2 hit latency, the

on-chip cache is better utilized by not replicating any data in L2, reducing the number of expensive off-

chip accesses when compared to a private L2 design.

The common shared memory abstraction model re- quires data coherence between cores. In this

example of the shared L2 cache architecture, private L1 caches need

to be kept coherent. When the number of cores is large (> 32), snoopy caches are no longer viable [6], and

we are left with directory-based cache coherence [7]. There are difficulties in scaling directories to hundreds

of cores, since the directory sizes grow with the number of cores. A fullmap directory is a directory that

keeps track of all the sharers of each cache block [8]. If, say, we have 256 cores on the chip, we will require a

256-bit vector for each shareable cache block, unless compression tech- niques, e.g., [9], [10], are applied,

which may degrade performance.

Moreover, directory protocols that maintain sequen- tially consistent operation may require up to four net-

work messages, that include broadcast (multicast) to all (a subset of) cores, and return acknowledgements.

Broadcast/multicast can be expensive in terms of latency and network traffic and therefore many techniques

have been developed to alleviate this expense (e.g., [11], [12]).

B. Our contribution: Library Cache Coherence Protocol (LCC)

We propose Library Cache Coherence (LCC), a novel cache coherence protocol which 1) does not require

broadcast/multicast of invalidations (and therefore, no collection of invalidation acknowledgements), 2) is

scal- able to any number of cores, and 3) guarantees sequential consistency.

There are several points worth of note before we describe the LCC protocol:

• We assume a global timer that is available to all cores and caches. (This timer does not have to increment

with the processor clock, and can be significantly slower.)

• Each memory address has a unique home L2 loca- tion.

• Each line in the L1/L2 cache has an additional timestamp. This timestamp is interpreted in two different

ways. If the data block is not in its home L2 location, the timestamp indicates the time until when the line

is valid (i.e., can be read), and if it is at its home L2, the timestamp holds the maximum value of

timestamps among all the copies of the data block.

• A line can only be written at its home location, i.e., writes requested by a processor have to be sent to the

home L2 cache.

We will describe the protocol informally here and more formally in Section III. A high-level example

of LCC with a shared L2 cache is also illustrated in Figure 1. While a data block can only be written in its

home L2 location, when a processor makes a requestfor a word in the data block, read-only copies of data

blocks with timestamps can be stored in L1 caches. The timestamp assigned to the data block is

assigned by the home L2 cache when it sends the block to the requesting core (cf. Figure 1a,1b). The

requested word from the block is loaded into a register, and a copy of the block is stored in the local

L1 cache provided that its timestamp has not expired. The home L2 cache keeps the information about the

timestamps assigned to each data block that is stored in it, for those blocks that have been shared. Crucially,

for any given data block, the home cache needs to just keep information about the maximum value of the

timestamp assigned to any copy of the data block. Any write request to the data block in the home cache will

not occur until the timestamp has expired. In other words, we delay writes to a block until all the read copies

of the data block have expired in their respective locations to maintain sequential semantics (cf. Figure 1c,1d).

3

9

8

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 398 Copyright @ 2020 Authors

≥

C. Comparing the Library and the Directory Protocol

The library protocol does not require broad- cast/multicast of invalidation messages, and

therefore it need not wait for invalidation acknowledgements to arrive, when writing to a shared cache

line. However, as writes are only done at the L2 cache of the home core, they do not exploit spatio-

temporal locality and may be delayed if the cache line being written has an unexpired copy elsewhere.

This implies that the choice of the timestamps is crucial to performance and we show how it affects the

performance of LCC in Section IV-A.

For the directory-based protocol, directories are stored at L2 caches combined with cache blocks, and

lines in L1 caches have state information on whether the line is shared or exclusive. On the other hand,

the library protocol requires per-cache-line timestamps for both the L1 and L2 caches. In terms of

scalability, the area overhead of directory-based protocols becomes greater as the number of cores grows,

as the sharer information grows linearly with the number of cores in a full-map directory scheme, whereas

the library protocol incurs only a constant overhead independent of the number of cores by storing

timestamps of fixed size in the L1 and L2 caches.

II. RELATED WORK

Reducing coherence overhead in distributed shared memory (DSM) has been widely explored over

decades. Dynamic Self-Invalidation (DSI) [13] eliminates inval- idation messages by having a processor

self-invalidate its local copy of a cache block before a conflicting

(a) Suppose core B has a copy of address X in its L1 and its timestamp is 860. Core C wants to read X, but

misses in its L1 cache, resulting in a remote read to the L2 cache at core

A. The remote read arrives at supposedly, t = 1000.Tdelta, 150, is added to the current clock, 1000, and

data is sent back to core C (L1 cache) with this new timestamp of 1150. The timestamp at core A’s L2 cache

is also updated.When core B wants to write on X, it needs to perform a remote write to the home core A,

and suppose it arrives at t = 1100. Since the current time has not past the timestamp (1150) yet, it should

wait until t be- comes greater than 1150.

(b) Once the timestamp has ex- pired (i.e., t 1150), the write can be performed and the ac-

knowledgement is sent back.

Fig. 1. An example of LCC for the private L1 and shared L2 configuration : assume core A to be the
home core for memory address X, and we add a constant Tdelta of 150 to the system time to decide a

new timestamp. Each box in the figure consists of Tag and Timestamp of the cache line for address X.
Note that the entry in the home L2 cache always keeps the maximum value of timestamps given out by the

home core, and other cores can hold the block only in their L1 caches.

memory request by another processor, and the directory needs to identify the blocks to be self-invalidated.

DSI, however, still requires invalidation acknowledgements to maintain sequential consistency. Last-Touch

Predictor (LTP) [14] predicts the ”last touch” to a memory block by one processor before the block is

accessed and subsequently invalidated by another using trace-based correlation. This, however, comes at a

high cost; to learn a last-touch, all the invalidation messages for a processor must be exposed to the

corresponding LTP, and the DSM controller needs to be integrated in the processor. Moreover, both DSI [13]

and LTP [14] are built on top of a directory-based protocol since blocks that are not self- invalidated still need

Write performed

at t = 1150

A

B C

L1 : Tag(X), 860 L1 : Tag(X), 1150

L2 : Tag(X), 1150
rite at t = 1100 is

delayed until 1150

A

B C

L1 : Tag(X), 860 L1 : Tag(X), 1150

L2 : Tag(X), 1150
New timestamp

= t + 150 = 1150

A

B C

L1 : Tag(X), 1150 L1 : Tag(X), 860

L2 : Tag(X), 1150
Remote read

at t = 1000

A

B C

L1 : Tag(X), 860

L2 : Tag(X), 860

3

9

9

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 399 Copyright @ 2020 Authors

to be explicitly invalidated in thein [17]). The scheme in [17] is not sequentially consis- tent, and only

supports a weaker notion of consistency, namely release consistency. In order to be sequentially consistent,

we need to maintain a library of timestamps at the home cache, which also assigns timestamps for data

requested. Our timestamps have two different meanings, and unlike in the scheme of [17], it is quite possible

for a cache block to have expired by the time it arrives at the requesting core because of interconnect

delays; we can, however, still use the word that was requested by the processor.

III. LIBRARY CACHE COHERENCE

A. Baseline Architecture
conventional manner. This necessitates directories and sharer information; LCC eliminates the need for

sharer information and therefore, is more scalable.

Timestamp-based approaches for self-invalidation were also proposed, but in the context of software cache

coherence. Min and Baer [15] proposed a timestamp- based software-assisted cache coherence scheme which

detects and invalidates the possibly incoherent cache

network

(a) Directory-based

(b) Library

Network

entry, essentially reassigning the entire burden of maintaining cache coherence to the compiler/software.

Timestamp-based Selective Invalidation Scheme (TB- SIS) [16] explicitly invalidates stale cache copies

using a special invalidation instruction if the corresponding variable is modified in the current epoch.

Again, the compiler must insert this instruction at the proper place at compilation time. Unlike these

schemes, library cache coherence is a full hardware coherence scheme and does not require additional

compiler or software support.

Nandy and Narayan [17] proposed a hardware-based, auto-invalidate cache coherence protocol. They

assume a fixed life-time tc for each cache line that begins with the load of the data in the requesting cache

(cf. Figure 3bFig. 2. Baseline architectures for DirCC and LCC (T/S = timestamp)

Figure 2 shows the baseline architecture for directory- based CC (DirCC) and LCC. Although LCC can

be implemented on either the private L2 or the shared L2 organization, we choose the shared L2

architecture (with private L1) as a baseline, and use the same architecture for both DirCC and LCC for a

fair comparison.

As shown in Figure 2a, directories and L2 caches are integrated for DirCC, so the sharer

information is contained together with each cache line. LCC does not require directories, but instead

requires per-cache-line timestamps for both the L1 and L2 caches (Figure 2b). Under the shared L2

architecture, each memory ad- dress has a unique home location. In this paper, we

Node

Switch

Private L1

Shared L2 Dir.

Core

Node

Core Switch

Private L1 T/S

Shared L2 T/S

4

0

0

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 400 Copyright @ 2020 Authors

use a static data placement scheme, striping, at page granularity, which allows the computation of the

home core from the memory address using simple logic.

Since data cannot be replicated in shared L2 caches, each L2 slice can maintain only the home data, and the

data fetched from remote L2 caches can only be cached in L1. For the library protocol, it is important to

note that the timestamp of L1 and that of L2 have different meanings. A timestamp in the L1 cache line

indicates the time until when the block can be read. A timestamp in the L2 cache, on the other hand, keeps the

maximum value of timestamps that have been assigned by the home L2 cache, until when the L2 cache must

prevent writing on the block. As all read copies at L1 caches will be discarded when their timestamps

expire, the home L2 cache can write to the block when the system time becomes larger than the maximum

timestamp value stored at the L2 cache.

B. Baseline Protocol

Below is the full description of library cache coher- ence protocol:

• Read operations

1) At the requesting core : The requesting core first looks up its local L1 cache, and proceeds to the L2

cache of the home location if it misses in its L1. The request to the L2 cache will be a local access if

the request gets a core hit, and a remote access if it gets a core miss. Note that an L1 cache block

will be invalid when its timestamp expires, so it won’t get a cache hit on an expired cache line.

2) At the home L2 cache : If the data does not exist in the L2 cache, it will first be brought to the

cache from the DRAM. Once the cache block is ready, it is returned to the requester core along

with a timestamp. Timestamp choosing logic is used to decide whether to use the old timestamp

which was previously given to other L1 caches, or to use a new timestamp. The maximum

timestamp among all timestamps issued to L1 caches is kept in the L2 cache.

• Write operations

1) At the requesting core : A write request is directly forwarded to its home L2. L1 caches do not have

to be looked up for writes, since writes can be only done in home L2 locations and L1 caches only

maintain read-only copies.

2) At the home L2 cache : If the data does not exist in the L2 cache, it will be first brought

to the cache from the DRAM. Once the cache block is ready, the L2 cache checks if its times-

tamp has expired. If it has not expired yet, the write is delayed until the current system time

reaches the timestamp value and the line has expired; this is a write delay. When a cache block is

brought in from DRAM, it has a null timestamp (cf. Section III-E.)

C. Request Scheduling at the L2 Cache (Home)

Multiple requests on the same cache line may arrive at an L2 cache at the same time. Scheduling of

these requests is very important in order to provide functional correctness and to prevent starvation. The

library proto- col processes one request at a time, serializing both read and write requests on the cache

block. Read requests and write requests are treated the same, and we assume a fair scheduling between

requests from the local L1 cache and remote L1 caches. When a write request is being delayed due to an

unexpired timestamp, however, the protocol holds the blocked write request until the timestamp expires

and processes other read requests if available. This may cause a read request that arrived later to be

processed before a blocked write request. However, this still maintains sequential consistency since the

reordered execution sequence is yet another se- quential interleaving of programs. We have assumed in-

order cores that have a single outstanding write request to simplify the requirements for sequential

consistency. However, this assumption is not strictly required for LCC as conventional techniques to

support sequential consistency for multi-issue or out-of-order cores can be applied to LCC as well without

significant modifications.

4

0

1

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 401 Copyright @ 2020 Authors

D. Choosing Timestamps

As shown in the protocol, timestamps affect whether memory reads in L1 caches result in hits or misses,

and also affect the amount of write delays at L2 caches. If a timestamp is too small, a core gets more L1

read misses as its read copy is invalidated too soon. If it is too large, on the other hand, the write delays

will compromise system performance. Thus, timestamp choosing logic plays a critical role in determining

the performance of library cache coherence.

Here, we present the simplest timestamp strategy, namely a FIXED-DELTA scheme. FIXED-DELTA

uses a constant value Tdelta to decide timestamps. When a read request for block X is being processed at its

home L2 cache:

1) if there is a write request on the same block X waiting to be served, the current timestamp of the

L2 entry is returned without any change to prevent increasing write delay.

2) otherwise, a new timestamp for the read request is calculated as (current clock + Tdelta) at the home L2

cache, and is returned to the requesting core’s L1 cache with the data block.

TABLE I

SYSTEM CONFIGURATIONS

Parameter Settings

Cores 64 in-order, single issue cores

L1 cache/ core 8 KB, 2-way set associativity L2 cache/ core 128 KB, 4-way set

associativity

We also implement and evaluate an IDEAL scheme; in

IDEAL, home L2 caches are assumed to know when the

L1/L2 Replacement Policy

LRU/LRU

next write request on each cache line will arrive, and/or when each cache line will be evicted by a capacity

miss. Timestamps are set to the time when the earlier event will happen, so read requests get the maximum

timestamp values that do not delay any writes or evictions. Although IDEAL is not implementable in real

hardware, the per- formance of IDEAL tells us the performance potential for LCC, provided we have a

smart timestamp choosing scheme that can predict close to optimal timestamp values. While relegating the

development of such a scheme to future work, we sweep the value of Tdelta for scheme FIXED-DELTA,

and show how close the best FIXED-DELTA scheme can perform when compared to the IDEAL scheme

(cf. Section IV).

E. Cache Replacement Policy

The library protocol can be implemented with any conventional cache replacement scheme with one modi-

fication to ensure the correctness of the protocol. While L1 cache evictions can be done anytime, an L2 cache

entry with unexpired copies should not be evicted until all the copies expire. If the cache entry gets evicted,

we lose track of the timestamp for the corresponding entry, and thus, we cannot fetch the correct timestamp

value when the entry is restored from memory — this will break sequential consistency. This restriction may

result in cache eviction delays if all the entries in multiple ways of the L2 cache happen to have unexpired

copies.

IV. EVALUATION

Using Pin [18] and Graphite [19], we first gener- ate memory instruction traces for a set of SPLASH-

2 benchmarks [20]: FFT, LU CONTIGUOUS, OCEAN, RADIX and WATER. Then, we feed these traces

4

0

2

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 402 Copyright @ 2020 Authors

to HORNET [21], a cycle-level multicore simulator, which models the interconnect behavior (e.g.,

congestion) in a cycle-accurate manner. The important system parameters used in the experiments are listed

in Table I.

A. FIXED-DELTA with varying Tdelta

We first swept the value of Tdelta for the FIXED- DELTA scheme, and Figure 3 shows a tradeoff

between

L1/L2 Access Latency 2 cycles/4 cycles Cache Line Size 32 bytes

Electrical network 2D Mesh, XY routing, 64-bit flits

Data Placement STRIPE, 4 KB page size Directory Coherence MESI, Full-map distributed di-
rectory

DRAM Acess Latency 50 cycles One-way Off-chip La- 150 cycles tency

Simulated Cycles 5,000,000 cycles

(a) FFT (b) LU CONTIGUOUS

Fig. 3. Average memory latency for varying Tdelta. Other bench- marks are not shown for lack of space,

but have the same trends.

the read latency and write latency. As we increase Tdelta, the L1 cache hit rate for reads increases

because the entry becomes valid for a longer period of time, resulting in lower average memory

latency for reads. For writes, however, the average latency increases with a larger Tdelta due to the write

delays. The combination of these two factors determine the optimal range of Tdelta which minimizes the

overall memory latency; for our experiments, Tdelta between 50 and 100 showed the best performance

depending on the benchmark, but without a big difference in performance within the range.

B. Performance Comparison with DirCC and LCC- IDEAL

Figure 4 shows the performance of the best FIXED- DELTA LCC and the IDEAL LCC, both

normalized to the MESI directory protocol. For all the benchmarks we run except for OCEAN, LCC

shows better performance than DirCC, and on average (geometric mean), the best LCC- Fixed outperforms

DirCC by 1.85x. This performance gain mainly comes from the fact that 1) LCC does

sJuni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 403 Copyright @ 2020 Authors

Fig. 4. Average overall memory latency for the LCC-Ideal and the best LCC-Fixed normalized to the MESI

directory protocol.

not send out invalidation requests and wait for their acknowledgements, and 2) LCC can serve subsequent

read requests while delaying a write on the same line maintaining sequential consistency. Moreover, the per-

formance of the ideal LCC is much better (outperforms DirCC by 5.5x), showing the potential for further im-

provement of LCC. For example, since each cache line has a different access pattern, a timestamp choosing

scheme that captures such patterns and assigns different Tdelta’s for each line at runtime may provide better

performance.

V. CONCLUSIONS

We presented a library cache coherence protocol that can replace conventional directory-based cache

coher- ence protocols in manycore architectures. LCC outper- forms a directory-based MESI protocol as it

avoids expensive invalidations before a write on a shared cache line. Also, it serves read requests first when a

write is pending because it is not allowed to write on a cache line, which further increases the memory access

perfor- mance while maintaining sequential consistency. LCC is also more scalable than directory-based

coherence since library size does not grow with the number of cores. We believe that the performance of

LCC can be improved further with more sophisticated schemes of choosing timestamps, which provides

an interesting research problem to the community. Finally, while we have focused on sequential consistency

in this paper, LCC can also improve performance for weaker memory consistency models.

REFERENCES

[1] S. Borkar, “Thousand core chips: a technology perspective,” in

DAC, 2007, pp. 746–749.

[2] E. Waingold, M. Taylor, D. Srikrishna et al., “Baring it all to Software: Raw Machines,” in IEEE

Computer, September 1997, pp. 86–93.

[3] K. Sankaralingam, R. Nagarajan, H. Liu et al., “Exploiting ILP, TLP, and DLP using polymorphism in

the TRIPS architecture,” in International Symposium on Computer Architecture (ISCA), June 2003, pp.

422–433.David Wentzlaff et al, “On-Chip Interconnection Architecture of the Tile Processor,” IEEE

Micro, vol. 27, no. 5, pp. 15–31, Sept/Oct 2007.

[4] S. R. Vangal, J. Howard, G. Ruhl et al., “An 80-Tile Sub-100- W TeraFLOPS processor in 65-nm

CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 29–41, 2008.

[5] A. Agarwal, R. Simoni, J. Hennessy et al., “An evaluation of directory schemes for cache

coherence,” in In Proceedings of the 15th Annual International Symposium on Computer

Architecture, 1988, pp. 280–289.

[6] A. Gupta, W. Weber, and T. Mowry, “Reducing memory and traffic requirements for scalable

directory-based cache coher- ence schemes,” in International Conference on Parallel Pro- cessing,

1990.

[7] D. Chaiken, C. Fields, K. Kurihara et al., “Directory-based cache coherence in large-scale

sJuni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-10 Issue-1 January 2020

 Page | 404 Copyright @ 2020 Authors

multiprocessors,” in COM- PUTER, 1990.

[8] J. Zebchuk, V. Srinivasan, M. K. Qureshi et al., “A tag- less coherence directory,” in Proceedings

of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, ser. MICRO 42, 2009,

pp. 423–434.

[9] H. Zhao, A. Shriraman, and S. Dwarkadas, “Space: sharing pattern-based directory coherence for

multicore scalability,” in Proceedings of the 19th international conference on Parallel architectures

and compilation techniques, 2010, pp. 135–146.

[10] N. Eisley, L.-S. Peh, and L. Shang, “In-network cache coher- ence,” in Proceedings of the 39th

Annual IEEE/ACM Interna- tional Symposium on Microarchitecture, 2006, pp. 321–332.

[11] J. A. Brown, R. Kumar, and D. Tullsen, “Proximity-aware directory-based coherence for multi-core

processor architec- tures,” in Proceedings of the nineteenth annual ACM symposium on Parallel

algorithms and architectures, 2007, pp. 126–134.

[12] A. R. Lebeck and D. A. Wood, “Dynamic self-invalidation: Re- ducing coherence overhead in shared-

memory multiprocessors,” in In Proceedings of the 22nd Annual International Symposium on

Computer Architecture, 1995.

[13] A.-C. Lai and B. Falsafi, “Selective, accurate, and timely self- invalidation using last-touch

prediction,” in Proceedings of the 27th Annual International Symposium on Computer Architec- ture,

ser. ISCA ’00, 2000.

[14] S. L. Min and J. L. Baer, “Design and analysis of a scalable cache coherence scheme based on clocks

and timestamps,” IEEE Trans. Parallel Distrib. Syst., vol. 3, pp. 25–44, January 1992.

[15] X. Yuan, R. Melhelm, and R. Gupta, “A timestamp-based selec- tive invalidation scheme for

multiprocessor cache coherence,” International Conference on Parallel Processing, vol. 3, p. 0114,

1996.

[16] S. K. Nandy and R. Narayan, “An Incessantly Coherent Cache Scheme for Shared Memory

Multithreaded Systems,” in Pro- ceedings of the First International Workshop on Parallel Pro-

cessing, 1994.

[17] M. M. Bach, M. Charney, R. Cohn et al., “Analyzing parallel programs with pin,” Computer, vol. 43,

pp. 34–41, 2010.

[18] J. E. Miller, H. Kasture, G. Kurian et al., “Graphite: A dis- tributed parallel simulator for multicores,”

in HPCA, 2010, pp. 1–12.

[19] S. Woo, M. Ohara, E. Torrie et al., “The SPLASH-2 programs: characterization and methodological

considerations,” in ISCA, 1995, pp. 24–36.

[20] M. Lis, P. Ren, M. H. Cho et al., “Scalable, accurate multicore simulation in the 1000-core era,” in

International Symposium on Performance Analysis of Systems and Software (ISPASS 2011), April

2011.

