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Abstract— An effective approach for chip multiprocessors and multicores is directory-based cache 

coherence. The collection of acknowledgement messages and invocation messages for the directory 

protocol, however, need multicast, which can be expensive in terms of latency and network traffic. 

Furthermore, as the number of cores rises, so does the directory's size. We offer Library Cache 

Coherence (LCC), which eliminates the need for invalidation acknowledgements or broadcasting or 

multicasting invalidations.  A library is a collection of timestamps that are used to delay writing to 

shared cache lines until all shared copies have expired and to automatically invalidate shared cache 

lines. The number of cores has no bearing on the size of the library. LCC produces fewer network 

messages since it does away with the intricate invalidation procedure of directory-based cache 

coherence protocols. When a write to a cache block is being delayed, LCC also permits reads on the 

block to occur without compromising sequential consistency. Consequently, even with a 

straightforward timestamp selection algorithm, LCC has 1.85X less average memory latency than a 

MESI directory-based protocol on our set of benchmarks; additionally, our experimental results on 

LCC with an ideal timestamp scheme (though not implementable) show the potential 

 

I. INTRODUCTION 

With the demise of Dennard scaling, the increase in processor clock frequencies from 1980-2003 has 

slowed down significantly [1]. To improve performance, archi- tects are exploring many parallel 

architectures includ- ing manycore architectures in academia (e.g., Raw [2], TRIPS [3]) and industry (e.g., 

Tilera [4], Intel Ter- aFLOPS [5]). In a manycore or multi-core architecture, cores with relatively low 

complexity are connected to memory and each other via high-bandwidth on-chip interconnect. 

How will these multicores be programmed? Amongst many different types of parallel programming 

models, message passing and shared memory are the most dom- inant ones. Some multicores, for example, 

the Tilera Tile-Gx 100 provide a shared memory abstraction to the programmer, while other architectures 

like Intel 

1equal contributors 

TeraFLOPS rely on message passing. Message passing is a very efficient programming model for certain 

types of applications, such as scientific computation. However, many programs and operating systems are 

based on the shared memory abstraction, so it is indispensable for general-purpose multicores to 

support the shared memory abstraction. 

On-chip cache memory cannot be directly imple- mented as a single large cache primarily because the 

energy consumption of caches grows quadratically with cache size, and because the number of read and 

write ports do not scale with the number of cores. To maintain performance, we need distributed caches 

that behave like a logically shared cache. 

 

A. Directory-Based Cache Coherence (DirCC) Architec- ture 

When we consider a two-level on-chip cache hierar- chy for a tiled multicore architecture, there are 

many choices in implementing a logically shared cache. One of the most common approaches in modern 

multicore processors is to implement a private L1 cache and a shared L2 cache slice for each core (e.g., 

Tilera’s 64- core processor [4], Cavium Octeon 32-core processor). A shared L2 cache architecture 
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unifies the per-core L2 cache slices into one large logically shared cache, and a memory address has a 

unique location where it can be cached on-chip, which is termed the home cache for the address. 

Therefore, data can be replicated in L1 but not in L2. On an L1 miss, the home L2 cache, where the 

data block may be located, needs to be looked up; the home can be a local L2 cache if the address is 

mapped to the requesting core’s cache (core hit), or a remote L2 cache if the core is not the home 

for the address (core miss). While these remote accesses may lead to a higher average L2 hit latency, the 

on-chip cache is better utilized by not replicating any data in L2, reducing the number of expensive off-

chip accesses when compared to a private L2 design. 

The common shared memory abstraction model re- quires data coherence between cores. In this 

example of the shared L2 cache architecture, private L1 caches need 

to be kept coherent. When the number of cores is large (> 32), snoopy caches are no longer viable [6], and 

we are left with directory-based cache coherence [7]. There are difficulties in scaling directories to hundreds 

of cores, since the directory sizes grow with the number of cores. A fullmap directory is a directory that 

keeps track of all the sharers of each cache block [8]. If, say, we have 256 cores on the chip, we will require a 

256-bit vector for each shareable cache block, unless compression tech- niques, e.g., [9], [10], are applied, 

which may degrade performance. 

Moreover, directory protocols that maintain sequen- tially consistent operation may require up to four net- 

work messages, that include broadcast (multicast) to all (a subset of) cores, and return acknowledgements. 

Broadcast/multicast can be expensive in terms of latency and network traffic and therefore many techniques 

have been developed to alleviate this expense (e.g., [11], [12]). 

 

B. Our contribution: Library Cache Coherence Protocol (LCC) 

We propose Library Cache Coherence (LCC), a novel cache coherence protocol which 1) does not require 

broadcast/multicast of invalidations (and therefore, no collection of invalidation acknowledgements), 2) is 

scal- able to any number of cores, and 3) guarantees sequential consistency. 

There are several points worth of note before we describe the LCC protocol: 

• We assume a global timer that is available to all cores and caches. (This timer does not have to increment 

with the processor clock, and can be significantly slower.) 

• Each memory address has a unique home L2 loca- tion. 

• Each line in the L1/L2 cache has an additional timestamp. This timestamp is interpreted in two different 

ways. If the data block is not in its home L2 location, the timestamp indicates the time until when the line 

is valid (i.e., can be read), and if it is at its home L2, the timestamp holds the maximum value of 

timestamps among all the copies of the data block. 

• A line can only be written at its home location, i.e., writes requested by a processor have to be sent to the 

home L2 cache. 

We will describe the protocol informally here and more formally in Section III. A high-level example 

of LCC with a shared L2 cache is also illustrated in Figure 1. While a data block can only be written in its 

home L2 location, when a processor makes a requestfor a word in the data block, read-only copies of data 

blocks with timestamps can be stored in L1 caches. The timestamp assigned to the data block is 

assigned by the home L2 cache when it sends the block to the requesting core (cf. Figure 1a,1b). The 

requested word from the block is loaded into a register, and a copy of the block is stored in the local 

L1 cache provided that its timestamp has not expired. The home L2 cache keeps the information about the 

timestamps assigned to each data block that is stored in it, for those blocks that have been shared. Crucially, 

for any given data block, the home cache needs to just keep information about the maximum value of the 

timestamp assigned to any copy of the data block. Any write request to the data block in the home cache will 

not occur until the timestamp has expired. In other words, we delay writes to a block until all the read copies 

of the data block have expired in their respective locations to maintain sequential semantics (cf. Figure 1c,1d). 
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C. Comparing the Library and the Directory Protocol 

The library protocol does not require broad- cast/multicast of invalidation messages, and 

therefore it need not wait for invalidation acknowledgements to arrive, when writing to a shared cache 

line. However, as writes are only done at the L2 cache of the home core, they do not exploit spatio-

temporal locality and may be delayed if the cache line being written has an unexpired copy elsewhere. 

This implies that the choice of the timestamps is crucial to performance and we show how it affects the 

performance of LCC in Section IV-A. 

For the directory-based protocol, directories are stored at L2 caches combined with cache blocks, and 

lines in L1 caches have state information on whether the line is shared or exclusive. On the other hand, 

the library protocol requires per-cache-line timestamps for both the L1 and L2 caches. In terms of 

scalability, the area overhead of directory-based protocols becomes greater as the number of cores grows, 

as the sharer information grows linearly with the number of cores in a full-map directory scheme, whereas 

the library protocol incurs only a constant overhead independent of the number of cores by storing 

timestamps of fixed size in the L1 and L2 caches. 

 

II. RELATED WORK 

Reducing coherence overhead in distributed shared memory (DSM) has been widely explored over 

decades. Dynamic Self-Invalidation (DSI) [13] eliminates inval- idation messages by having a processor 

self-invalidate its local copy of a cache block before a conflicting 

 

    
(a) Suppose core B has a copy of address X in its L1 and its timestamp is 860. Core C wants to read X, but 

misses in its L1 cache, resulting in a remote read to the L2 cache at core 

A. The remote read arrives at supposedly, t = 1000.Tdelta, 150, is added to the current clock, 1000, and 

data is sent back to core C (L1 cache) with this new timestamp of 1150. The timestamp at core A’s L2 cache 

is also updated.When core B wants to write on X, it needs to perform a remote write to the home core A, 

and suppose it arrives at t = 1100. Since the current time has not past the timestamp (1150) yet, it should 

wait until t be- comes greater than 1150. 

(b) Once the timestamp has ex- pired (i.e., t 1150), the write can be performed and the ac- 

knowledgement is sent back. 

 

Fig. 1. An example of LCC for the private L1 and shared L2 configuration : assume core A to be the 
home core for memory address X, and we add a constant Tdelta of 150 to the system time to decide a 

new timestamp. Each box in the figure consists of Tag and Timestamp of the cache line for address X. 
Note that the entry in the home L2 cache always keeps the maximum value of timestamps given out by the 

home core, and other cores can hold the block only in their L1 caches. 

 

memory request by another processor, and the directory needs to identify the blocks to be self-invalidated. 

DSI, however, still requires invalidation acknowledgements to maintain sequential consistency. Last-Touch 

Predictor (LTP) [14] predicts the ”last touch” to a memory block by one processor before the block is 

accessed and subsequently invalidated by another using trace-based correlation. This, however, comes at a 

high cost; to learn a last-touch, all the invalidation messages for a processor must be exposed to the 

corresponding LTP, and the DSM controller needs to be integrated in the processor. Moreover, both DSI [13] 

and LTP [14] are built on top of a directory-based protocol since blocks that are not self- invalidated still need 
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to be explicitly invalidated in thein [17]). The scheme in [17] is not sequentially consis- tent, and only 

supports a weaker notion of consistency, namely release consistency. In order to be sequentially consistent, 

we need to maintain a library of timestamps at the home cache, which also assigns timestamps for data 

requested. Our timestamps have two different meanings, and unlike in the scheme of [17], it is quite possible 

for a cache block to have expired by the time it arrives at the requesting core because of interconnect 

delays; we can, however, still use the word that was requested by the processor. 

 

III. LIBRARY  CACHE  COHERENCE 

A. Baseline Architecture 
conventional manner. This necessitates directories and sharer information; LCC eliminates the need for 

sharer information and therefore, is more scalable. 

Timestamp-based approaches for self-invalidation were also proposed, but in the context of software cache 

coherence. Min and Baer [15] proposed a timestamp- based software-assisted cache coherence scheme which 

detects and invalidates the possibly incoherent cache 

network 

 

 

 

 

 

 

(a) Directory-based 

(b) Library 

 

Network 

entry, essentially reassigning the entire burden of maintaining cache coherence to the compiler/software. 

Timestamp-based Selective Invalidation Scheme (TB- SIS) [16] explicitly invalidates stale cache copies 

using a special invalidation instruction if the corresponding variable is modified in the current epoch. 

Again, the compiler must insert this instruction at the proper place at compilation time. Unlike these 

schemes, library cache coherence is a full hardware coherence scheme and does not require additional 

compiler or software support. 

Nandy and Narayan [17] proposed a hardware-based, auto-invalidate cache coherence protocol. They 

assume a fixed life-time tc for each cache line that begins with the load of the data in the requesting cache 

(cf. Figure 3bFig. 2. Baseline architectures for DirCC and LCC (T/S = timestamp) 

Figure 2 shows the baseline architecture for directory- based CC (DirCC) and LCC. Although LCC can 

be implemented on either the private L2 or the shared L2 organization, we choose the shared L2 

architecture (with private L1) as a baseline, and use the same architecture for both DirCC and LCC for a 

fair comparison. 

As shown in Figure 2a, directories and L2 caches are integrated for DirCC, so the sharer 

information is contained together with each cache line. LCC does not require directories, but instead 

requires per-cache-line timestamps for both the L1 and L2 caches (Figure 2b). Under the shared L2 

architecture, each memory ad- dress has a unique home location. In this paper, we 
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use a static data placement scheme, striping, at page granularity, which allows the computation of the 

home core from the memory address using simple logic. 

Since data cannot be replicated in shared L2 caches, each L2 slice can maintain only the home data, and the 

data fetched from remote L2 caches can only be cached in L1. For the library protocol, it is important to 

note that the timestamp of L1 and that of L2 have different meanings. A timestamp in the L1 cache line 

indicates the time until when the block can be read. A timestamp in the L2 cache, on the other hand, keeps the 

maximum value of timestamps that have been assigned by the home L2 cache, until when the L2 cache must 

prevent writing on the block. As all read copies at L1 caches will be discarded when their timestamps 

expire, the home L2 cache can write to the block when the system time becomes larger than the maximum 

timestamp value stored at the L2 cache. 

 

B. Baseline Protocol 

Below is the full description of library cache coher- ence protocol: 

• Read operations 

1) At the requesting core : The requesting core first looks up its local L1 cache, and proceeds to the L2 

cache of the home location if it misses in its L1. The request to the L2 cache will be a local access if 

the request gets a core hit, and a remote access if it gets a core miss. Note that an L1 cache block 

will be invalid when its timestamp expires, so it won’t get a cache hit on an expired cache line. 

2) At the home L2 cache : If the data does not exist in the L2 cache, it will first be brought to the 

cache from the DRAM. Once the cache block is ready, it is returned to the requester core along 

with a timestamp. Timestamp choosing logic is used to decide whether to use the old timestamp 

which was previously given to other L1 caches, or to use a new timestamp. The maximum 

timestamp among all timestamps issued to L1 caches is kept in the L2 cache. 

• Write operations 

1) At the requesting core : A write request is directly forwarded to its home L2. L1 caches do not have 

to be looked up for writes, since writes can be only done in home L2 locations and L1 caches only 

maintain read-only copies. 

2) At the home L2 cache : If the data does not exist in the L2 cache, it will be first brought 

to the cache from the DRAM. Once the cache block is ready, the L2 cache checks if its times- 

tamp has expired. If it has not expired yet, the write is delayed until the current system time 

reaches the timestamp value and the line has expired; this is a write delay. When a cache block is 

brought in from DRAM, it has a null timestamp (cf. Section III-E.) 

 

C. Request Scheduling at the L2 Cache (Home) 

Multiple requests on the same cache line may arrive at an L2 cache at the same time. Scheduling of 

these requests is very important in order to provide functional correctness and to prevent starvation. The 

library proto- col processes one request at a time, serializing both read and write requests on the cache 

block. Read requests and write requests are treated the same, and we assume a fair scheduling between 

requests from the local L1 cache and remote L1 caches. When a write request is being delayed due to an 

unexpired timestamp, however, the protocol holds the blocked write request until the timestamp expires 

and processes other read requests if available. This may cause a read request that arrived later to be 

processed before a blocked write request. However, this still maintains sequential consistency since the 

reordered execution sequence is yet another se- quential interleaving of programs. We have assumed in- 

order cores that have a single outstanding write request to simplify the requirements for sequential 

consistency. However, this assumption is not strictly required for LCC as conventional techniques to 

support sequential consistency for multi-issue or out-of-order cores can be applied to LCC as well without 

significant modifications. 
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D. Choosing Timestamps 

As shown in the protocol, timestamps affect whether memory reads in L1 caches result in hits or misses, 

and also affect the amount of write delays at L2 caches. If a timestamp is too small, a core gets more L1 

read misses as its read copy is invalidated too soon. If it is too large, on the other hand, the write delays 

will compromise system performance. Thus, timestamp choosing logic plays a critical role in determining 

the performance of library cache coherence. 

Here, we present the simplest timestamp strategy, namely a FIXED-DELTA scheme. FIXED-DELTA 

uses a constant value Tdelta to decide timestamps. When a read request for block X is being processed at its 

home L2 cache: 

1) if there is a write request on the same block X waiting to be served, the current timestamp of the 

L2 entry is returned without any change to prevent increasing write delay. 

2) otherwise, a new timestamp for the read request is calculated as (current clock + Tdelta) at the home L2 

cache, and is returned to the requesting core’s L1 cache with the data block. 

TABLE I 

SYSTEM    CONFIGURATIONS 

  

Parameter Settings 

  

Cores 64 in-order, single issue cores 

L1 cache/ core 8 KB, 2-way set associativity L2 cache/ core 128 KB, 4-way set 

associativity 

We also implement and evaluate an IDEAL scheme; in 

IDEAL, home L2 caches are assumed to know when the 

L1/L2 Replacement Policy 

LRU/LRU 

next write request on each cache line will arrive, and/or when each cache line will be evicted by a capacity 

miss. Timestamps are set to the time when the earlier event will happen, so read requests get the maximum 

timestamp values that do not delay any writes or evictions. Although IDEAL is not implementable in real 

hardware, the per- formance of IDEAL tells us the performance potential for LCC, provided we have a 

smart timestamp choosing scheme that can predict close to optimal timestamp values. While relegating the 

development of such a scheme to future work, we sweep the value of Tdelta for scheme FIXED-DELTA, 

and show how close the best FIXED-DELTA scheme can perform when compared to the IDEAL scheme 

(cf. Section IV). 

 

E. Cache Replacement Policy 

The library protocol can be implemented with any conventional cache replacement scheme with one modi- 

fication to ensure the correctness of the protocol. While L1 cache evictions can be done anytime, an L2 cache 

entry with unexpired copies should not be evicted until all the copies expire. If the cache entry gets evicted, 

we lose track of the timestamp for the corresponding entry, and thus, we cannot fetch the correct timestamp 

value when the entry is restored from memory — this will break sequential consistency. This restriction may 

result in cache eviction delays if all the entries in multiple ways of the L2 cache happen to have unexpired 

copies. 

 

IV. EVALUATION 

Using Pin [18] and Graphite [19], we first gener- ate memory instruction traces for a set of SPLASH- 

2 benchmarks [20]: FFT, LU CONTIGUOUS, OCEAN, RADIX and WATER. Then, we feed these traces 
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to HORNET [21], a cycle-level multicore simulator, which models the interconnect behavior (e.g., 

congestion) in a cycle-accurate manner. The important system parameters used in the experiments are listed 

in Table I. 

 

A. FIXED-DELTA with varying Tdelta 

We first swept the value of Tdelta for the FIXED- DELTA scheme, and Figure 3 shows a tradeoff 

between 

L1/L2 Access Latency 2 cycles/4 cycles Cache Line Size 32 bytes 

Electrical network 2D Mesh, XY routing, 64-bit flits 

Data Placement STRIPE, 4 KB page size Directory Coherence MESI, Full-map distributed di- 
rectory 

DRAM Acess Latency 50 cycles One-way Off-chip La- 150 cycles tency 

Simulated Cycles 5,000,000 cycles 

  
 

 

(a) FFT (b) LU CONTIGUOUS 

Fig. 3. Average memory latency for varying Tdelta. Other bench- marks are not shown for lack of space, 

but have the same trends. 

 

the read latency and write latency. As we increase Tdelta, the L1 cache hit rate for reads increases 

because the entry becomes valid for a longer period of time, resulting in lower average memory 

latency for reads. For writes, however, the average latency increases with a larger Tdelta due to the write 

delays. The combination of these two factors determine the optimal range of Tdelta which minimizes the 

overall memory latency; for our experiments, Tdelta between 50 and 100 showed the best performance 

depending on the benchmark, but without a big difference in performance within the range. 

 

B. Performance Comparison with DirCC and LCC- IDEAL 

Figure 4 shows the performance of the best FIXED- DELTA LCC and the IDEAL LCC, both 

normalized to the MESI directory protocol. For all the benchmarks we run except for OCEAN, LCC 

shows better performance than DirCC, and on average (geometric mean), the best LCC- Fixed outperforms 

DirCC by 1.85x. This performance gain mainly comes from the fact that 1) LCC does 
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Fig. 4. Average overall memory latency for the LCC-Ideal and the best LCC-Fixed normalized to the MESI 

directory protocol. 

 

not send out invalidation requests and wait for their acknowledgements, and 2) LCC can serve subsequent 

read requests while delaying a write on the same line maintaining sequential consistency. Moreover, the per- 

formance of the ideal LCC is much better (outperforms DirCC by 5.5x), showing the potential for further im- 

provement of LCC. For example, since each cache line has a different access pattern, a timestamp choosing 

scheme that captures such patterns and assigns different Tdelta’s for each line at runtime may provide better 

performance. 

V. CONCLUSIONS 

We presented a library cache coherence protocol that can replace conventional directory-based cache 

coher- ence protocols in manycore architectures. LCC outper- forms a directory-based MESI protocol as it 

avoids expensive invalidations before a write on a shared cache line. Also, it serves read requests first when a 

write is pending because it is not allowed to write on a cache line, which further increases the memory access 

perfor- mance while maintaining sequential consistency. LCC is also more scalable than directory-based 

coherence since library size does not grow with the number of cores. We believe that the performance of 

LCC can be improved further with more sophisticated schemes of choosing timestamps, which provides 

an interesting research problem to the community. Finally, while we have focused on sequential consistency 

in this paper, LCC can also improve performance for weaker memory consistency models. 
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