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Abstract— The usage of DRAM caches for multi-node systems is examined in this research. The 

DRAM cache in current systems is designed as a Memory-Side Cache (MSC), which limits it to 
exclusively caching local data and relies solely on small on-die caches for remote data. MSC is 
implicitly coherent and does not require any coherence support because it simply stores local data. 

Unfortunately, MSC experiences this delay overhead on each on-die cache miss to the remote data 
since accessing the data in the remote node involves a large inter-node network latency. Using the 
DRAM cache to store both local and remote data is a preferable substitute. Data blocks can be 
cached in various DRAM caches, hence this design—known as a coherent DRAM cache—requires 
coherence support for DRAM caches to assure correctness (CDC).The usage of DRAM caches for 
multi-node systems is examined in this research. The DRAM cache in current systems is designed as 
a Memory-Side Cache (MSC), which limits it to exclusively caching local data and relies solely on 
small on-die caches for remote data. MSC is implicitly coherent and does not require any coherence 
support because it simply stores local data. Unfortunately, MSC experiences this delay overhead on 
each on-die cache miss to the remote data since accessing the data in the remote node involves a large 

inter-node network latency. Using the DRAM cache to store both local and remote data is a 
preferable substitute. The approach, however, necessitates coherence because data blocks might be 
cached in various DRAM caches. 

I. INTRODUCTION 

To mitigate the DRAM bandwidth wall, recent packag- ing advancements enable DRAM chips to be 

placed closer to the processors in the same package [1–4]. The DRAM chips are often stacked with 

multiple layers, and referred to as 3D-DRAM, providing much higher bandwidth compared to 

commodity DIMM-based DRAM [5, 6]. Several leading industry vendors announce systems with 3D-

DRAM, for ex- ample Intel’s Xeon Phi, AMD’s Radeon R9 and NVIDIA’s Pascal [7–10]; such technology 

has advanced from prototype to commercial adoption. 3D-DRAM, however, cannot fully re- place 

commodity DRAM in a cost-effective manner; therefore, future systems are likely to contain both 3D-

DRAM (for high bandwidth) and commodity DRAM (for high capacity). 

An attractive use of 3D-DRAM is to architect it as a hardware-managed cache that is an intermediate 

level between the on-die caches and the main memory. Although recently there are many research 

proposals in enabling large DRAM caches, these studies focus on only single-node systems [11– 22]. In 

contrast, this paper studies DRAM caches for multi- node systems. Figure 1(a) shows a multi-node system, 

where each node has a 4-core multi-processor, an on-die L3 cache, a DRAM cache, and a DDR-based 

main memory. 

To use DRAM caches in a multi-node system, one practical design is to restrict the DRAM cache in each 

node to store only the data that belongs to the local node (i.e., Local Data). Figure 1(b) shows such design, 

termed Memory-Side Cache (MSC) by the industry vendor [7, 8]. Node 0’s DRAM cache holds only the 

data from Node 0 ( , and symbols in Figure 1); similar for Node 1’s DRAM cache (    , and     ). Any 

data line is stored in at most one DRAM cache, so MSC is implicitly coherent and obviates the need of 

any coherence support for DRAM caches. However, MSC constraints the system to rely on the small on-

die cache for the data from the remote node (i.e., Remote Data). As accessing the remote data incurs long 

network latency, MSC suffers from a significant latency overhead of on-die cache misses to the remote 
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data. 

A desirable alternative is to allow the DRAM cache to cache both the local and the remote data to 

mitigate the long network latency overhead. Given that the DRAM cache capacity is in the range of 

gigabytes, it is capable of holding a much larger working set, hence reducing the needs to access remote 

nodes. Figure 1(c) shows such design: Node 0’s DRAM cache holds all request initiated from processors in 

Node 0 and caches the data from both Node 0 and Node 1 ( ,    and    ); Node 1’s DRAM cache does 

the same for requests from Node 1 ( , and   ). As this type of DRAM cache stores data blocks from any 

node, a shared data block can be stored in multiple DRAM caches (e.g.,      stored in DRAM caches of 

both Node 0 and Node 1). Therefore, the DRAM caches must be kept coherent for correctness, and we 

term this design Coherent DRAM Cache (CDC). 

To realize CDC, we investigate how current multi-node sys- tems maintained cache coherence: On-die 

L3 caches usually rely on a directory-based coherence protocol, which uses a Coherence Directory (also 

termed Directory Cache) to track 

Node 0 Node 1 

Node 0 

  Data in Node 0 Node 1Data in Node 1 Node 0 

 

Node 1 
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Coherent 

 

 

 

Node 3 

(a) System Overview 

 

(b) Memory−Side Cache (c) Coherent DRAM Cache 

Fig. 1. (a) Overview of a multi-node System. Each node has a 4-core multi-processor, a shared on-die 

cache (L3 cache), a DRAM cache, and a DDR-based main memory. Figure (b) and (c) show different 

usage of DRAM caches in multi-node systems. Each symbol in (b) and 

(c) represents a data block in the memory. (b) Memory-Side Cache. The DRAM cache in node 0 is 

allowed to cache only the data that is in Node 0 (    and    in this case); same for Node 1 (Ⓧ and Δ). On-

chip L3 caches must still be be kept coherent. (c) Coherent DRAM Cache. The DRAM cache stores data 

from both nodes. Node 0’s DRAM cache stores data blocks requested by node 0 and caches data from 

both Node 0 and Node 1 (□, Ⓧ and Δ); same for Node 1 (§ , and Ⓧ). In this case, DRAM caches must 

be kept coherent. 

To serve a cache miss, the coherence protocol forms two steps: accessing the coherence directory for the 

current coherence state, and then retrieving the most recent copy of the data. To employ the directory-based 

protocol for CDC, we identify two key challenges. 

First, the coherence directory for giga-scale DRAM cache is as large as few tens of megabytes. As the size 

of the coherence directory must be proportional to the cache capacity [28–31], a 1GB DRAM cache 
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necessitates a 64MB storage for the coherence directory. Such large structure incurs a prohibitive overhead 

of both storage and latency. As accessing the coher- ence directory is on the critical path, a low-latency 

coherence directory is the key to the performance. 

Second, to retrieve the most recent copy of data from a DRAM cache causes long latency in CDC. 

When a cache miss accesses a data block that is cached and modified by another cache, the protocol must 

request the owner to write back the most recent data to keep caches coherent. Such critical operation is 

termed Request-For-Data; in CDC, the cache access latency of Request-For-Data is a DRAM cache access 

latency and incurs a significant overhead. 

To overcome these challenges and enable CDC for multi- node systems with low overheads, this paper 

makes the following contribution: 

1) To the best of our knowledge, this is the first paper that studies DRAM caches for multi-node 

systems, and quantifies the performance of different usages of DRAM caches. We show that an 

impractical CDC has a potential performance improvement of 30% over MSC. 

2) To architect high-performing CDC, we identify two key challenges, and propose DRAM Caches for 

Multi- Node Systems (CANDY), composed of two orthogonal techniques to address the challenges, 

namely: 

a) We propose to place the coherence directory in the 3D-DRAM to avoid the SRAM storage 

overhead. To mitigate the 3D-DRAM access latency for thecoherence directory, we propose to 

re-purpose the existing on-die coherence directory as a DRAM- Cache Coherence Buffer (DCB) 

to store the re- cently accessed coherence information. We further improve DCB by co-

optimizing the organization of the DCB and the coherence directory. As the on-die coherence 

directory is already provisioned in systems without DRAM caches, DCB does not incur any 

SRAM storage overhead. 

b) We also propose Sharing-Aware Bypass (SAB) to mitigate the DRAM cache access latency of 

the Request-For-Data operation. Our insight is that Request-For-Data accesses only read-write 

shared data, which transition among nodes, and need not to be stored in DRAM caches. SAB 

dynamically detects read-write shared data at run-time and enforces such data to bypass DRAM 

caches. Thus, read-write shared data are stored only in L3 caches, and the cache access latency of 

Request-For-Data becomes an SRAM cache latency. SAB is effective and simple with a 

negligible storage overhead of 8KB SRAM per node (less than 0.2% L3 area). 

We evaluate a 4-node system, where each node has a 1GB 3D-DRAM, architected as a Memory-

Side Cache or as a Coherent DRAM Cache, and we run 16-core parallel applications from various 

benchmarks suites. Our experiment results show that DCB improves performance over the design without 

DCB by 10%, while SAB provides an additional 4% improvement over DCB. Overall, our proposed 

CANDY has 25% improvement over the baseline MSC with a negligible overhead of 8KB SRAM per 

node; CANDY is effective to obtain almost all the potential 30% improvement of an impractical CDC 

that incurs a prohibitive overhead of 64MB SRAM for coherence directory with zero cache access latency 

for the Request-For-Data operation. 

   Data in Node 0 Data in Node 1 
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II. BACKGROUND AND MOTIVATION 

In this section, we examine how current systems maintain cache coherence via coherence directory, and 

show two key problems of the giga-scale Coherent DRAM Caches: archi- tecting the coherence directory 

and mitigating the Request- For-Data latency. We also show the potential performance improvement by 

an impractical CDC that overcomes the two problems without the overheads. 

A. DRAM Caches in Multi-Node Systems 

Prior studies focus on single-node systems with only one DRAM cache.
1
 This paper investigates the use 

of DRAM caches for multi-node systems, where each node employs one DRAM cache. One practical 

design is Memory-Side Cache (MSC), which allows the DRAM cache to store only the local data. For 

example, Intel’s Xeon Phi features a direct-mapped, 64B line-size DRAM cache as a Memory-Side Cache 

[7, 8]. Although MSC does not need any coherence support, it constrains the system to use last-level caches 

(LLC) for the remote data; a LLC miss to the remote data incurs a significant latency overhead due to the 

inter-node network traversal. 

Such constraint restricts the capability of DRAM caches. With a much larger capacity, DRAM cache is 

capable of holding a large working set including both the local and the remote data. If DRAM caches 

were able to keep the remote data, a LLC miss to the remote data could hit in the DRAM cache and 

avoid the latency overhead. To relax MSC’s constraint, we allow DRAM caches to store both local and 

remote data. In this case, a cache block shared by the processors can be stored in multiple locations, and 

must be coherent for correctness. To distinguish, we refer to this kind of DRAM cache as Coherent DRAM 

Cache (CDC). In CDC, the DRAM cache becomes the last-level cache (L4 in our configuration) and the 

point of cache coherence. For simplicity, we interchangeably use L4 caches and DRAM caches in CDC. 

B. Directory-based Coherence Protocol 

Current multi-node systems typically use directory-based coherence protocol because of its superior 

scalability [23– 25]. One appealing design is to use Sparse Directory to track the cache blocks that are 

currently being cached (and need to be coherent) in the system. Commercial products implement sparse 

directory by dedicating part of the die area. For example, AMD’s Magny-Cours has 1MB SRAM structure 

(named Probe Filter by AMD) for the sparse directory [32]. As sparse directory stores coherence 

information, we term such structure Coherence Directory (CDir)
2
, to distinguish from Tag Directory (TDir), 

which stores tag information for data blocks in the cache. Figure 2 shows how CDir and TDir are organized. 

In Figure 2, the coherent cache stores the cache blocks requested by the local processors. TDir, the tag 

directory, is as- sociated with one coherent cache, and has the state information 

1With only one DRAM cache in the system, the DRAM cache is implicitly coherent, and needs no 
coherence support. 

2Sparse Directory, also referred to as Directory Cache in other litera- tures [27–31], is not to be 
confused with full coherence directory [23]. 
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they are responsible for different data blocks that are currently being cached in the system. 

(e.g., valid, dirty) for all lines that are currently stored in its associated cache. For example, in Node 0, 

processors request for three data blocks ( ,    , and    ). Therefore, the TDir in Node 0 has information 

of these three lines. In contrast, CDir, the coherence directory, is associated with the memory in a node, 

and has the coherence information (e.g., shared, exclusive, etc., depending on the coherence protocol) for 

all the cache blocks that belong to its memory and are currently being cached (by any node) in the system. 

For example, two blocks (     and     ) from Node 1 are currently being cached; the CDir in Node 1 keeps 

information of these two lines. Node 1 is referred to as the Home Node for these two lines. 

In directory-based protocol, the home node is responsible for retrieving the most recent copy of the data 

on a L4 cache miss: First, the home node accesses the CDir for the coherence information of the requested 

data block. Based on the request type of the cache miss and the coherence state of the requested data block, 

the home node takes different operations. For in- stance, if the requested data block is uncached, the home 

node accesses the memory to retrieve the data. Other operations include invalidating a copy in others’ 

caches, or requesting the owner to write back the most recent data. To apply the directory-based coherence 

protocol to CDC, we identify two key problems, described in the following sections. 

C. The Need for Large Coherence Directory 

To use directory-based coherence protocol for CDC, we need a CDir for the L4 DRAM cache. We 

examine whether the current architecture that keeps on-die L3 cache coherent can be applied to the L4 

caches. 

1) On-Die L3 Coherence Directory: In the baseline MSC, an on-die L3 coherence directory, termed 

OnDie-CDir, is responsible for maintaining L3 cache coherence. For example, the aforementioned Probe 

Filter by AMD. In CDC, the point of coherency is the L4 cache, and one simple way to organize the CDir 

for L4 caches is to use the same OnDie-CDir. Although this approach reuses the existing resources and 

does not incur extra overhead, we found that compared to MSC, using OnDie- CDir as the L4 coherence 

directory degrades performance by an average of 24%, with a maximum of 66% (detailed 

methodology in Section III). Therefore, using existing OnDie- CDir for DRAM caches jeopardizes the 

use of CDC. The performance degradation stems from the insufficient coverage of OnDie-CDir, as we 

explain in the following paragraphs. 

D. Coverage of Coherence Directory: A CDir entry in- cludes the memory address, the state (e.g., modified, 

exclusive, etc.), and a sharer bit vector for the sharers or the owner. Every cached block must have a 

corresponding entry in the CDir; when a valid CDir entry is replaced, it invalidates the corresponding 

cache block in L4. Such invalidation is referred to as Coherence-induced Invalidation. To minimize 

coherence- induced invalidation, the number of CDir entries must be proportional to the cache capacity. 

The ratio of the numberThe Need for Low-Latency Request-For-Data Operation 

The other challenge to architect giga-scale CDC is a low- latency Request-For-Data operation. The 

Request-For-Data (also termed Fwd-GetS) is the operation that the home node asks the owner to write 

back the most recent copy of the data. Therefore, the Request-For-Data operation reads the most recent 

data via a cache access, and is on the critical path. To illustrate, we use Figure 4 that follows Figure 2 as an 

example. Now consider a read miss to a Modified data block ( ) 1 . The CDir in the home node (Node 

0) indicates that Node 1 is the owner of the block 2 . The home node requests Node 1 to write back the 

most recent data via a Request-For-Data (RFD) operation 3 . When the owner receives the request, it 
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128 

128 

of the entries in CDir to the number of cache blocks in the reads its copy of the data from the cache and 

replies to the 

cache is referred to as Coverage of the coherence directory. An 1X-coverage CDir, with as many entries 

as the number of cache blocks in the system, is the minimum coverage so that DRAM cache capacity is 

fully used. 

home node. The home node then replies to the requester and makes the coherence state Shared. 
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Fig. 4. Sequence for a Request-For-Data (RFD) Operation 

Figure 5 shows a latency breakdown of the Request-For- Data operation that reads the data in the 

cache for both MSC 

 

Fig. 3. Impact of Coherence Directory Coverage on DRAM Cache Miss Rate. We use a 1GB DRAM cache 

for this study, and show OnDie-CDir (equivalent to 
1
 X) and coverage of 1X, and 2X. 

 

3) Size of Coherence Directory: To understand coverage requirements for DRAM caches, we use a 

system with 1GB DRAM cache, which holds 16 million cache blocks; we 

and CDC. Figure 5(a) shows the case of MSC, where L3 caches are the point of coherency. Therefore, 

the cache access latency of Request-For-Data is a L3 cache latency. In contrast, such latency becomes a 

DRAM cache latency when it comes to CDC in Figure 5(b), because L4 caches are the point of coherency; 

therefore, the Request-For-Data operation in CDC incurs a significantly long latency. 

 

vary the coverage and show the corresponding DRAM cache miss rate in Figure 3. OnDie-CDir, with 256K 

entries or an equivalent coverage of 
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Request X 

return X 

in very high DRAM cache miss rate and degrades performance. For an 1X coverage, the CDir needs 16 

million entries for a 1GB DRAM cache (16 million blocks). Even each entry is only 4 bytes, the size of 

the coherence directory would be 64MB.
3
 Note that 
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the required coverage is a function of application’s working set and access behavior. While 1X coverage 

seems sufficient, certain application, suggested by prior studies [28–31], could require higher coverage (at 

even higher storage cost). We assume 1X coverage (64MB) for our study, but our proposal can also be 

extended to 2X coverage (128MB). 

 

3Given 16 million entries, each CDir entry requires 22-bit tags (48-bit physical address, 6-bit line 
offset, 20-bit set indexing for 16-way associativity), 1 valid bit, 2 state bits, and 4 bits for the sharer 
vector, so the size of each CDir entry is 29 bits. We provision 32 bits (4 Byte) for one CDir entry. 

a) Memory−Side Cache (b) Coherent DRAM Cache 

 

Fig. 5. Latency Breakdown of Request-For-Data Operation in Memory-Side Cache (coherent L3), and 

Coherent DRAM Cache (coherent L4). Latency not to scale. 

E. Performance Potential of CDC 

We identify two key challenges to architect giga-scale CDC, and show that existing architecture cannot 

be directly applied to CDC. To understand the performance potential of CDC, Figure 6 shows the 

performance improvement by CDC 

 

TABLE I 
WORKLOADS:  BENCHMARK,  

SUITES,  AND  INPUT  SIZE 
Name Suites Input 
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OnDie-CDir (1MB SRAM) 
Impractical-CDC (64MB SRAM) 

           

 
                                 

     

nt 
facesim parsec 80,598 particles, 372,126 tetrahedra, 1 frame 

water.nsq splash2 20
3
 Molecules 

streamclus
ter 

parsec 16,384 input points, block size 16,384 points, 128 
point dimensions 

kmeans NU-
MineBench 

10M elements, 9 dimension, 16 cluster 

vip
s 

parsec 2,662 x 5,500 pixels 

radiosity splash2 BF refinement =1.5e
−3

 
fluidanima

te 
parsec 300,000 particles, 5 frames 

dedup parsec 184 MB file size 
fm
m 

splash2 256K Particles 

barnes splash2 256K Particles,Timestep= 0.25 

 

with respect to MSC. We architect the CDC by using an impractical SRAM-based coherence directory of 

an 64MB SRAM overhead and zero L4 DRAM cache access latency for Request-For-Data operations 

(still incurs inter-node net- work latency). We term such design Impractical-CDC. On average, the 

Impractical-CDC outperforms MSC by 30%, with a maximum speedup of 2.8X from ocean.cont. Note that 

workloads with significant performance improvement tend to have large footprint of private data or read-

only shared data (detailed workloads in Section III and Table I). Therefore, for such workloads, CDC 

avoids inter-node network latency and significantly improves performance. 
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Fig. 6. Performance of CDC using OnDie-CDir and Impractical Coherent DRAM Cache (Impractical-

CDC). 

To architect high-performing giga-scale Coherence DRAM Cache, we propose DRAM Caches for Multi-

Node Systems (CANDY), which has two orthogonal components to address the challenges. In Section IV, 

we investigate the coherence directory for giga-scale L4 caches, and show how to leverage existing 

resources for a low-latency coherence directory. In Section V, we provide further analysis on the Request-For-

Data problem, and propose a technique to mitigate the latency by exploiting the characteristics of read-write 

shared data. Before we present our solutions, we first describe the methodology. 

III. EXPERIMENTAL    METHODOLOGY 

A. System Configuration 

We use Sniper [33] simulator to conduct our experiments, and configure the system using the parameters 

shown in 
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Table II. We evaluate a 4-node system, where each node has 4 processors, a shared L3 on-die cache, a 

DRAM cache, and also DDR3 memory. The timing and bandwidth specification of DRAM cache are 

modeled after High Bandwidth Memory [2]. Each processor has private L1-D, L1-I, and L2 caches. Inter- 

node communication relies on high-speed links, modeled after Intel’s QPI and AMD’s HyperTransport [34, 

35]. We use Alloy Cache to implement DRAM caches, including Memory-Side Cache and Coherent 

DRAM Cache [15], and also equip the DRAM caches with Hit-Miss predictor [14, 15]. MSC is the default 

baseline system, unless stated otherwise. 

 
TABLE II SYSTEM CONFIGURATION 

 
Node 

Number of 
Nodes 

4 

Each Node Configuration 
Processors 

Number of 
Cores 

Frequency 

4 
3.2GHz 

Last Level Cache 
Shared L3 
Cache 

4MB, 16-way, 24 
cycles 

DRAM 
Cache 

Capacity 
Bus 

Frequency 
Channels 

Banks 
Bus 

Width Row 
Buffer Size 
tCAS-
tRCD-tRP 

tRAS 

1GB 
800MHz (DDR 

1.6GHz) 
8 

16 Banks per 
rank 64 bits 
per channel 
2048 Bytes 

11-11-11 bus 
cycle 

45 bus cycle 

Main Memory (DDR-based 
DRAM) 

Capacity 
Bus 

Frequency 
Channels 

Banks 
Bus 

Width Row 
Buffer Size 
tCAS-
tRCD-tRP 

tRAS 

16GB 
800MHz (DDR 

1.6GHz) 
2 

8 Banks per 
rank 64 bits 
per channel 
2048 Bytes 

11-11-11 bus 
cycle 

45 bus cycle 

Coherence Protocol 
Protocol 

On-Die L3 
Directory 

MESI 
1MB 

Inter-Node Network 
Bandwidth 

Latency 
12.4GB/s 

50 ns one-way 
latency 
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(a) SRAM−CDir 
(b) Embedded−CDir 
(c) Cache Access and CDir Access 

 

Fig. 7. Coherence Directory Organization. (a) SRAM-based Coherence Directory, (b) Embedded 

Coherence Directory and (c) Cache Access and CDir Access. One read access to Embedded-CDir in 3D 

DRAM gets 18 CDir entries (72 bytes). Note that our proposal is based on, but not limited to, Alloy 

Cache [15]. 
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We use MESI coherence protocol as default [36]. The coherence directory (CDir) is distributed and 

associated with each node. Each entry in the CDir uses a full sharer vector to record the sharing 

information. For MSC, the coherence directory for L3 cache coherence is 1MB and located on-die. It tracks 

256K cache blocks, same as AMD’s Magny-Cours [32]. 

B. Workloads 

We study parallel multi-threaded programs from various benchmarks suites, including splash2, parsec, 

NPB, and NU- MineBench [37–40]. We, unless stated otherwise, use simlarge input set shown in Table I. 

We simulate the workloads only during the parallel parts of the workloads (the region of interest, ROI); the 

sequential sections at the beginning is used to warm up the cache, and is not included in our timing 

evaluation [41]. We report the workloads that execute more than 1 billion instructions in ROI, and sort the 

workloads based on their memory intensity. The speedup of the workloads is normalized to the baseline 

system that uses MSC. 

IV. DRAM-CACHE COHERENCE BUFFER: ARCHITECTING LOW-LATENCY 

COHERENCE DIRECTORY 

In this section, we present a practical design to build a low-cost and low-latency coherence directory 

for giga-scale Coherent DRAM Caches. 

A. Coherence Directory Organization 

One way to build a coherence directory is to use a separate storage structure to keep the coherency 

information [28–32]. For giga-scale CDC, we first examine two simple ways that follow the same 

principle. 

1) SRAM-Based Coherence Directory: The first approach is to use SRAM storage. However, given the 

size of the coherence directory (64MB, larger than L3 cache), putting it on die is prohibitively expensive. 

Figure 7(a) shows the design of SRAM-based CDir, termed SRAM-CDir. In SRAM-CDir, the latency to 

access the CDir is the SRAM access latency. 

2) Embedding Coherence Directory in 3D DRAM: Alterna- tively, a practical design to accommodate 

such large structure is to place the coherence directory in the 3D DRAM to avoid SRAM storage 

overhead. A portion of the 3D DRAM capacity is reserved for the CDir, thus reducing the DRAM cache 

capacity. We refer to this embedded approach as Embedded- CDir, and show it in Figure 7(b). Figure 

7(c) illustrates how to access DRAM cache and Embedded-CDir in 3D-DRAM, and shows an example of 

the state-of-the-art Alloy Cache [15]. In DRAM cache, each cache access gets a basic access unit of 72 

bytes (8B TDir and 64B Data). For simplicity, we also use the same basic access unit for the Embedded-

CDir. Thus, one access to the Embedded-CDir also gets 72 bytes, which includes 18 CDir entries (4B 

each). Note that we use Alloy Cache only for illustration purpose; our proposal can also be extended to 

other DRAM cache organizations. 

To reduce coherence-induced invalidation, we can organize the Embedded-CDir as a highly set-

associative structure. For example, 18-way set-associative (High-Assoc), given each ac- cess returns 18 

CDir entries. Figure 8 shows the performance for Embedded-CDir that is High-Assoc, and Low-Assoc 

(direct-mapped, 18 sets for 18 CDir entries). On average, High-Assoc improves performance by 11%, 

while Low-Assoc is 10%. (We also conduct studies for other associativities, but show only two 

configurations due to the space constraint.) Although High-Assoc delivers the higher performance, we will 

discuss how lower set-associativity could further improve performance in later section. 

In addition, Figure 8 also shows the performance improve- ment by SRAM-CDir. On average, SRAM-

CDir improves performance by 25%, while Embedded-CDir is 11%. How- ever, Embedded-CDir degrades 
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performance for several bench- marks, such as streamcluster (42%), radiosity (16%), and barnes (15%). 

Therefore, although Embedded-CDir is a more practical design to reduce costly SRAM storage overhead, 

it does not perform as well as the SRAM-CDir, due to the latency overhead of accessing the Embedded-

CDir in 3D-DRAM. 
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or, in other words, the Hit Rate of DCB. Higher DCB hit rate leads to lower average latency. 

Therefore, the effectiveness of mitigating CDir access latency depends on the hit rate of DCB. The hit 

rate of DCB is a function of its size and its interaction with the Embedded-CDir, and we present two 

simple designs for DCB to maximize the hit rate. 

1) Exploiting Temporal Locality: After a DCB miss, the home node retrieves the corresponding 

CDir entry by ac- cessing the Embedded-CDir and performing tag-matching. To exploit temporal 

locality, the home node inserts the demand missing CDir entry into DCB so that future cache misses 

are likely to hit the same entry in the DCB. As this design inserts 
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CDir 

Fig. 8. Performance of Embedded-CDir (Low-Assoc and High-Assoc) 

and SRAM-CDir 

 

B. Leveraging On-Die Coherence Directory 

Ideally, we want the latency of SRAM-CDir with the lightweight SRAM storage overhead of the 

Embedded-CDir. To this end, we propose to re-purpose the on-die SRAM co- herence directory (OnDie-

CDir, meant for L3 cache coherence in MSC) as a buffer to store the recently accessed CDir entries from 

Embedded-CDir. Recall that OnDie-CDir is provisioned and used for the L3 cache coherence in MSC 

(described in Section II-C); in CDC, as L4 cache becomes the point of cache coherence, the OnDie-

CDir is unused. We leverage such existing SRAM structure in CDC and term it DRAM-cache Coherence 

Buffer (DCB). 

Home Node 

 

 

Cache Miss 

Dir entries into DCB on demand misses, we refer to this as DCB-Demand. To minimize the misses of 

DCB, we architect the DCB to maximize the associativity; therefore, we organize the DCB as a 16-way 

set-associative structure, indexed by the memory address. 

1) Exploiting Spatial Locality: Besides temporal locality, we also exploit spatial locality to improve 

DCB hit rate. For example, for a streaming workload that sequentially accesses the memory, a cache 

miss to memory address X implies a high likelihood that the subsequent cache miss would go to memory 

address close to X [42–44]. In the context of CDir entries, it means that the next requested coherence 

directory entry is spatially correlated to the currently requested CDir entry. Based on this, we propose to 

organize the DCB and the Embedded-CDir for spatial locality by exploiting the access granularity of 3D-

DRAM. 
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Fig. 9. Overview of DRAM-cache Coherence Buffer (DCB) and Embedded-CDir. On a cache miss, the 

home node first checks the DCB; if the entry misses in DCB, the home node checks the Embedded-CDir in 

3D-DRAM. 
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Figure 9 shows the overview of DCB and also its interaction with Embedded-CDir. On a cache miss, the 

home node first checks the DCB to find the corresponding entry. If the entry is found in DCB (a hit in 

DCB), the latency to access the CDir entry is only the DCB latency, which is a SRAM access latency. On 

the other hand, if the entry is not found in DCB (a miss in DCB), the home node retrieves the entry 

from Embedded-CDir by issuing a 3D-DRAM read access. In this case, the latency to access the CDir 

entry is the sum of the DCB latency and the Embedded-CDir latency. After Embedded-CDir returns the 

entry, the home node inserts the entry into DCB for future references. 

C. Design of DCB 

The latency to retrieve the CDir entry is determined by whether the entry is found in DRAM-cache 

Coherence Buffer, 

Fig. 10. Optimizing DCB and Embedded-CDir for Spatial Locality 

 

To exploit spatial locality, we want to install both demand and spatially correlated CDir entries by 

fetching multiple CDir entries (across sets). In High-Assoc Embedded-CDir, one 3D- DRAM access 

returns only one set; fetching additional sets incurs extra 3D-DRAM read. To avoid such bandwidth over- 

head, we propose to use lower set-associative Embedded-CDir such that the CDir entries of continuous 

memory addresses are placed in one 3D-DRAM access unit and will be fetched in one 3D-DRAM access. In 

Figure 10, we show an example that one 3D DRAM access returns 4 sets (medium set-associativity). (One 

access gives 18 entries, so we implement this by using 5-way for odd sets, and 4-way for even sets.) CDir 

entries for up to 4 continuous memory addresses from different sets are fetched together in one access. 

Therefore, every access to the 

Embedded-CDir returns not only the requested entry but also entries of the continuous addresses. In Figure 

10, the address finds an extra match and inserts one additional CDir entry (address X+2). As this design is 

for spatial locality, we term this design DCB-SpaLoc. 

D. Effectiveness of DCB 

1) DCB Hit Rate: Figure 11 shows the hit rate of DCB for both DCB-Demand and DCB-SpaLoc 

designs. Recall that DCB is re-purposed from OnDie-CDir, and has a fixed area budget of 1MB SRAM.
4
 In 
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such allowance, DCB-Demand has an average DCB hit rate of 75%, while DCB-SpaLoc has an average 

DCB hit rate of 81%. 
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Fig. 11. DCB Hit Rate: DCB-Demand and DCB-SpaLoc. Both are allowed for 1MB SRAM in size. 

2) Performance: Figure 12 compares the performance for the Embedded-CDir, DCB-Demand, and DCB-

SpaLoc, as well as a case where DCB is perfect with 100% hit rate (termed DCB-Perfect). On average, 

DCB-Demand outperforms the baseline MSC by 18%, while DCB-SpaLoc improve perfor- mance by 21%, 

and DCB-Perfect has a performance im- provement of 25%. DCB-Demand and DCB-SpaLoc mitigate the 

performance degradation introduced by the Embedded- CDir (e.g., mg, streamcluster, and radiosity), and 

outperform the Embedded-CDir by 7% and 10%, respectively. Also, the improvement of DCB hit rate by 

DCB-SpaLoc reflects on the performance improvement (3% over DCB-Demand). For the rest of the paper, 

we use DCB-SpaLoc. 
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Fig. 12. Performance Comparison of Embedded-CDir, DCB-Demand, DCB-SpaLoc and DCB-Perfect 

 
4We also conduct a sensitivity study of the DCB size, and find that the DCB hit rate of 1MB DCB-

SpaLoc is as good as 8MB DCB-Demand. 

V. SHARING-AWARE BYPASS: ARCHITECTING LOW-LATENCY REQUEST-

FOR-DATA 

Request-For-Data is a critical and necessary operation that reads the most recent data from a cache. 

Unfortunately, in CDC, such operation incurs a 3D-DRAM access latency, which is much higher than the 

latency in its counterpart MSC. We investigate the Request-For-Data problem in CDC, and propose a 
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technique to mitigate the cache access latency of Request-For-Data by exploiting the characteristics of 

read- write shared data. 

A. Request-For-Data: What and Why? 

To maintain coherent caches, coherence protocol relies on different operations based on the type of the 

request and the coherence state of the requesting block. Such operations include accessing the memory 

and Coherence Operations. While the memory access fetches data from the memory, the coherence 

operations are dedicated to keeping the cached data up-to-date. Without loss of generality, we can further 

classify coherence operation into three categories: (1) Request For Data (RFD), which asks the owner to 

write back the most recent data; (2) Invalidate (INV), which invalidates the copy in a cache; and (3) 

Flush, which is a combination of RFD and INV) [24, 25].
5
 Table III shows the detailed classification. 

TABLE III 
CLASSIFICATION  OF  COHERENCE  OPERATIONS  BASED  ON  REQUEST  TYPE AND 

THE COHERENCE STATE OF THE DATA BLOCK 

 
State Read Exclusive/

Write 
Modifi

ed 
RFD Flush 

Exclus
ive 

RFD Flush 

Shared Memory 
Read 

INV 

Invali
d 

Memory 
Read 

Memory 
Read 

 

An INV updates the TDir (valid bit) by a write access to TDir, while an RFD and a flush must 

access the data in the cache via a read access to the cache. In CDC, the RFD operation reads the data from 

the DRAM cache, and incurs a 3D-DRAM read access. Therefore, the RFD latency in CDC is much 

longer than in MSC, where RFD incurs only a L3 SRAM cache access latency (Illustration shown in 

Figure 5). Also, the RFD is on the critical path, and such RFD latency overhead in CDC penalizes the 

performance. To understand the impact of RFD, we conduct an analysis to break down the percentage of 

different operations in CDC. 

Figure 13 shows the percentage of four operations with respect to DRAM cache accesses: Request-For-

Data (RFD), Invalidate (INV), Memory (Mem), and Hit. (Flush is counted as RFD, as a Flush includes an 

RFD.) On average, the L4 cache hit rate is 59%; RFD contributes to 20% of the L4 cache accesses, while 

12%, and 9% of the L4 accesses are INV and Mem, respectively. Therefore, 49% of the cache misses 

results in RFD operations. Mitigating the latency for RFD is a key challenge of high-performing CDC. 

5Reuqest-For-Data is termed Fwd-GetS, and Flush Fwd-GetM in MESI pro- 
tocol [27]. Specific coherence operations depend on the coherence protocol. We use MESI as an example 
for explanation, but all protocol require similar operations to maintain coherence. 
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Miss CDir 
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DATA 

L3$ 

L3 Evict 
R/W Sharing 
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RWS? 
1     Set/Reset 

WB   Yes 

Entry 

3 BypL4? 

No 

DRAM$ Bypass 2 By 
DATA 

State Tag 

RFD INV MEM Hitshared data can be easily identified when a given request incurs such 

operations. (otherwise, it is read-only shared data or private data.) Thus, on the event of any 

coherence operations, we can classify the data block into read-write shared data or the other. On 

invalidate, RFD, and flush operations, the data block is marked Read-Write Shared. We use one bit 

in the CDir entry to keep track of this classification. On a memory read operation, we reset the bit to 

mark the data as not read- write shared data. As a data block can transition into one mode from 

the other, our detection mechanism dynamically identifies read-write shared data at run-time. We 

refer to the 

ig. 13. Percentage of DRAM Cache Requests: Request For Data (RFD), Invalidate (INV), Memory 

(MEM) and Hits 

B. Sharing-Aware Bypass: Mitigating DRAM Cache Access Latency of Request-For-Data 

Although RFD reads data from a cache, not all data in the cache are accessed by RFD operations: As 

RFD maintains cache coherence for read-write shared data, only read-write shared data are accessed by 

RFD [45]. Therefore, if such data are not read from the L4 DRAM caches, but from the L3 caches, the 

cache access latency of RFD reduces significantly. One simple way to achieve this goal is to use select 

caching or cache bypassing [46]. In other words, the read-write shared data bypass L4 caches, and are 

stored only in L3 caches.
6
 

To this end, we propose Sharing-Aware Bypass (SAB), which enforces read-write shared data to 

bypass L4 caches at run-time. Figure 14 shows the overview of Sharing-Aware Bypass. SAB is composed 

of two parts: dynamically detecting read-write shared data, and enforcing the bypassing policy at L4 

DRAM caches. 
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Fig. 14. Overview of Sharing-Aware Bypass: (1) Read-write Shared Data Detection, (2) Cache Miss and 

DRAM Cache Bypass, and (3) L3 Dirty Eviction and Bypassing DRAM Cache 

 

C. Detecting R/W Shared Data 

To detect read-write shared data, we employ a simple mechanism that is based on the events of 

coherence oper- ation [29, 31]. The read-write shared data is the necessary and sufficient condition for 

coherence operations, so read-write 

6Another way to mitigate the DRAM cache access latency is to hide the L4 cache access latency by 
accessing the L3 cache in parallel. However, if the data requested by RFD are not in L3, but in L4, the 
latency is determined by the L4 cache access latency. 
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D. Enforcing Sharing-Aware Bypass 

To enforce the bypassing policy for respective types of data, we discuss when to determine the bypassing 

decision, and how to enforce the bypassing decision in the system. 

1) When to Decide: Once SAB identifies a read-write shared data, it can use such information to decide 

the bypass- ing policy. The bypassing decision is determined only on the event of ownership change, 

because ownership change implies that only one node, the requesting node, in the system will have the 

copy of the data. This avoids unnecessary invalidation to memory address that is shared by multiple sharers 

in the system. The bypassing decision is stored in the CDir entry associated with the data block by using 

another bit in the CDir entry. To distinguish from Read-Write Shared bit, we term this bit Bypass L4 

(BypL4) bit. 

2) How to Enforce: For simplicity, SAB maintains a uni- form bypassing decision for all nodes in the 

system. This means if one data block bypasses DRAM caches, such block cannot be stored in any DRAM 

caches in any case. However, a data block would attempt to be stored in DRAM caches in two cases: (1) a 

L4 cache miss (to be installed to L4 caches), and (2) a L3 dirty eviction (to be written back to L4 caches). 

We describe how SAB handles these two cases. 

L4 Cache Miss. A cache miss goes to the home node to request the data. When replying to the 

requester, the home node communicates the BypL4 bit in the message with data. The requesting node 

examines the BypL4 bit, and the data bypass the DRAM cache if the BypL4 bit is set. 

L3 dirty Eviction. On a L3 dirty eviction that attempts to write the data to DRAM caches, the L4 

DRAM cache must know the bypassing decision. L4 caches can choose to consult the home node for such 

information; however, this significantly and unnecessarily increases the latency as well as the network 

traffic. Alternatively, we propose to store the BypL4 information in the L3 cache by adding one bit in 

the tag directory of L3 cache. A L3 dirty eviction uses the BypL4 bit to decide whether the evicted data 

block should bypass the L4 cache. If the bit is set, meaning bypassing L4 caches, the L3 cache writes the 

modified data back to the home node. 

The storage overhead of Sharing-Aware Bypass includes two bits in the CDir entry, and one bit per line 

in L3 caches. As the CDir entry is provisioned to be 32 bits (4 bytes), and only 29 bits are used, two bits 

in CDir entry do not incur any 
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Fig. 15. Performance of No DRAM Caches (L3 Only), Embedded-CDir, our proposed CANDY, and 

impractical CDC with 64MB SRAM overhead and zero L4 cache read latency for RFD operation 

(Impractical-CDC). Note that the performance is normalized to the baseline Memory-Side Cache. We 

report the geometric mean as an AVG in the right most bar. 
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Fig. 16. Performance of Sharing-Aware Bypass 

he geometric mean in the right most bar, labeled AVG. On av- erage, L3-Only (i.e., no DRAM caches) 

degrades performance by 18%, with a maximum loss of 58% from mg. Embedded- CDir outperforms 

MSC by an average of 11%, but degrades performance for a couple of workloads (e.g., 

streamcluster and radiosity). CANDY not only mitigates such performance degradation but also 

improves average performance by 14% over Embedded-CDir. Overall, CANDY outperforms MSC by 

an average of 25% with a maximum improvement of 1.8X from ocean.cont. Also, CANDY gets 

almost all the potential performance improvement of Impractical-CDC, which has an average 

performance improvement of 30%. 

B. Sensitivity Studies: Scalability and Network Latency 

 

storage overhead. For a 4MB L3 cache (64K lines), one bit per line incurs an SRAM overhead of 8KB per 

node. Therefore, our proposed Sharing-Aware Bypass incurs negligible storage overhead (less than 0.2% 

L3 area). 

 

E. Effectiveness of Sharing-Aware Bypass 

We conduct a study to understand the effectiveness of SAB by counting the number of RFD 

serviced by the L3 caches. Compared to a bypassing scheme that has the oracle knowledge of the read-

write shared data and uses L3 caches for all the RFD, SAB uses L3 cache for 78% of the RFD. Also, 

the effectiveness of SAB reflects on the performance improvement, shown in Figure 16. On average, SAB 

provides a speedup of 4% in addition to the improvement by DCB, and overall outperforms MSC by 25%. 

We assume 4 nodes in our default system, and we conduct a sensitivity study to test the scalability of 

our proposal. We vary the number of nodes by changing the total number of processors while keeping the 

number of processors per node constant: We vary the number of nodes from 2 nodes to 8 nodes (8 cores to 

32 cores), and show the performance for MSC and Candy in Figure 17(a). Note that the speedup is 

with respect to each own baseline. CANDY outperforms MSC consistently across the spectrum, and 

improves performance by 41%, 25%, 32% for 2-node, 4-node, and 8-node systems, respectively. We also 

conduct a study that varies the inter-node network latency from 0.5X (25ns) to 2X (100ns). As shown in 

Figure 17(b). CANDY consistently outperforms MSC by 25%, 25%, and 29% speedup for 0.5X, 1X, and 

2X inter-node network latency, respectively. 
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VI. SULTS AND ANALYSIS 

A. Overall Performance 

We evaluate our proposal using a 16-core system running parallel benchmark suites. Figure 15 compares 

our proposal CANDY to Memory-Side Cache (MSC), and also an imprac- tical Coherent DRAM Cache 

that uses a 64MB SRAM storage 
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for the coherence directory and has zero L4 cache read latency for RFD operation (Impractical-CDC). 

Figure 15 also showsNumber of Nodes Normalized Network Latency 

  the performance for a system that has no DRAM cache (termed 

L3-Only). The baseline is Memory-Side Cache, and we report Fig. 17. Sensitivity Studies. (a) Scalability 

with Number of Nodes, and (b) Normalized Network Latency. 

 C. Savings of Inter-Node Network Traffic 

CDC enables the DRAM cache to keep the remote data; such capability not only avoids the inter-node 

network latency, but also reduces inter-node traffic and alleviates the bandwidth pressure on the inter-node 

network. Figure 18 shows the inter-node network traffic reduction by CANDY. On average, CANDY 
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with significant traffic reduction tend to have significant per- formance improvement, as CANDY is able to 

cache the private data or read-only shared data of such workloads. 
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Fig. 18. Inter-node Network Traffic Reduction by CANDY (The higher the better) 

D. Data Placement in Multi-Node Systems 

To avoid inter-node network latency, prior work exploits thread-local data in Non-Uniform Memory 

Access (NUMA) systems [47]. We use interleaved memory address as default, but conduct a study for 

NUMA-aware systems [48–50]. In such systems, the operating system maps pages using NUMA- aware 

data placement policy (e.g., First-Touch) [51, 52]. Figure 19 shows such systems for MSC and CANDY. 

Note that CANDY (NUMA-Aware) is normalized to MSC that also uses NUMA-aware policy. On average, 

CANDY (NUMA-Aware) outperforms MSC by 26%. Streamcluster prefers interleaved data placement, 

because its programming model appoints the master thread to initiate data structures, and centralizes all 

data in one node [53]. Figure 19 also shows a configuration where OS optimizes the page placement policy 

for individual workload based on the performance (termed SW-Opt). The OS chooses the best-performing 

page mapping policy for MSC, and uses the same policy for both MSC and CANDY. Even with such 

highly optimized data placement policy, CANDY (SW-Opt) still outperforms MSC by an average of 15%. 

VII. RELATED WORKS 

A. DRAM Caches 

Recently, there are many studies on DRAM caches. These proposals focus on the architecture of 

DRAM caches, and optimize the DRAM cache for performance [11–22]. However, all studies implicitly 

consider one DRAM cache in single-node systems. In contrast, our paper aims to use DRAM caches for 

multi-node systems. 

There are also several studies optimizing the latency for DRAM caches. One optimization is to use a 

small SRAM structure to avoid the tag look-up latency [11, 12, 16, 22]. In 

 

Fig. 19. Performance of CANDY with NUMA-aware and software- optimized (SW-Opt) policy 

contrast, our DCB re-purposes the existing on-die coherence directory that is provisioned for L3 caches, 

and does not incur additional SRAM overheads. Note that DCB is orthogonal to the tag look-up 

optimization. 

B. Coherence Directory and Protocols 
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Coherence protocols is a popular research area in the past few decades [54]. For scalability, 

multiprocessor and multi- node systems typically adopt directory-based protocols [55– 58]. For directory-

based protocols, the key challenge is to design a low-cost coherence directory [23–25]. Duplicate-Tag 

directories incur low area cost, but its high associativity makes it energy inefficient and hard to scale [59, 

60]. 

Sparse Directory is one of the appealing directory-based protocol, because of its scalability and energy-

efficiency. Prior studies focus on reducing the directory storage overhead by reducing the sharer vector 

length or by reducing the conflict misses [28–31]. However, in our paper, we focus to design the coherence 

directory for a giga-scale DRAM cache, which is two orders of magnitude larger than the on-die cache. 

Even with the most aggressive technique that reduces the coverage of coherence directory to 
1
 X, the 

coherence directory still needs 16MB of storage. Nevertheless, all these optimizations are orthogonal to 

our proposal, and can be combined to further improve the performance. 

Like the relationship between DCB and the Embedded- CDir, other studies propose similar idea to 

construct a two- level coherence directory architecture to improve space com- plexity or to improve 

energy consumption [61–63]. However, these proposals incur additional storage overhead to implement the 

two-level structure, while our proposed DCB re-purposes the existing on-die coherence directory and does 

not incur extra storage overhead. 

C. Shared Memory Systems 

For a shared-memory computer system that has non-uniform memory access latency, Cache-Only 

Memory Architecture (COMA) and Reactive-NUMA are proposed to mitigate the long latency across 

nodes [48–50]. As opposed to line- granularity coherent caches in a NUMA system (Cache- Coherent 

Non-Uniform Memory Architecture, or ccNUMA), COMA operates at a page granularity, and relies on 

the operating system to maintain coherence. These works study 

the use of the memory, not cache. However, our work is independent of these proposals, as caches are still 

coherent, regardless a NUMA or COMA system. 

Since the network is a scarce resource, many prior works, such as Remote Memory Operations, focus on 

how to reduce the network traffic by either hardware-based or software-based and by either delegation or 

privatization [45, 64–66]. However, these proposals come with significant change in the whole computing 

stacks (i.e., program, compiler, ISA, and hardware). We address the Request-For-Data problem for DRAM 

caches with negligible overhead and change. 

 

VIII. SUMMARY 

Recent technology advancement makes DRAM cache a promising candidate to transparently provide 

high bandwidth to the applications. In this paper, we study DRAM caches for multi-node systems. To 

the best of our knowledge, this is the first paper to investigate coherence DRAM caches and also quantify 

the performance of DRAM caches. To architect giga-scale coherence DRAM caches, we discover two key 

challenges: (1) the coherence directory, whose size is as large as tens of MB, thus incurring prohibitive 

overheads of storage and latency, and (2) the Request-For-Data operation, which is critical to access the 

most recent copy of data. To enable high- performing CDC in multi-node systems, we propose CANDY, a 

scalable and low-cost solution to address both issues. 

First, to accommodate such large structure, we dedicate a portion of the 3D DRAM capacity to avoid 

SRAM storage overhead. To mitigate the latency to access the coherence directory in 3D DRAM, we 

propose DRAM-cache Coherence Buffer, which re-purposes the existing on-die coherence di- rectory to 

cache recently accessed coherence directory entries. As the on-die coherence directory is already 

provisioned for L3 cache coherence, our proposal does not incur any SRAM storage overhead. To improve 
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DCB hit rate, we further exploit spatial locality to co-organize DCB and Embedded-CDir. 

Second, to mitigate the Request-For-Data latency for read- write shared data, we propose Sharing-Aware 

Bypass, which dynamically identifies read-write shared data, and enforces such data to bypass DRAM 

caches. Our insight is that we can mitigate the latency if read-write shared data is stored only in L3 

caches. We develop a simple mechanism to identify the read-write shared data at run time and also 

enforce the bypassing decision for the system. Sharing-Aware Bypass incurs negligible overheads of 8KB 

per node, but is effective to mitigate the Request-For-Data latency. 

We evaluate parallel workloads in a 4-node system. Our proposed CANDY outperforms Memory-Side 

Cache by 25%. CANDY has negligible overhead of 8KB per node; still, it provides within 5% of the 

potential performance improvement from an impractical coherent DRAM cache that incurs a storage 

overhead of 64MB SRAM with idealized Request- For-Data latency. We believe that enabling coherence 

DRAM caches not only improves performance for multi-node systems but also explores a new avenue of 

cache coherence studies.ACKNOWLEDGEMENTS 
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