
Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 21 Copyright @ 2021 Authors

DATA MINING TECHNOQUES AND ITS APPLICATIONS A SURVEY

Durga Shankar Baggam1, Dr.Prakash Chandra Jena2

1Computer Science & Engineering,Gandhi Engineering College,Bhubaneswar, India

2Computer Science & Engineering,Gandhi Engineering College,Bhubaneswar, India

Abstract

Proximity Keyword Search is the best and de-facto mechanism that is utmost useful in searching the

web and particularly in long unstructured XML documents. This system is designed to convert XML

documents to relational databases by using a very scarcely used Ctree Concept. The Ctree concept

helps us to match the XML very fastly to schema-less relational databases. Then the index is built on

the database and helps in faster retrieval of Proximity Keyword Search in XML documents. It provides

an efficient mechanism of generating ranked results for queries related to keyword search over XML

documents. The proposed system is the first of its kind in which the keyword string is pre processed

before searching the XML document. In particular, this system is implemented in two stages. In the first

stage, a set of keyword indices are built using CTREE concept for a set of XML documents. In the

searching phase, the keywords entered by the user are analyzed and searched. Lowest common ancestor

of the given keywords is computed and the generated ranks are directly dependent on the located

keyword distance.

Keywords— XML, Relational Databases, Indexing, CTREE, Proximity Search, LCA

I. INTRODUCTION
XML, whose full-form is Extensible Markup Language is a widely used markup language for Structured

Information documents. When we call it Structured Information, it represents words, pictures, etc. and even

purpose of that content (for instance, footnote content means a lot more different than the section heading

content which inturn is a lot more different than figure caption content or a database table content). Every

document possesses a structure. With the rapid digital evolution, XML has been used in diverse fields such as

data mining, intelligent retrieval, artificial intelligence, bio technology, medical science etc. Hence it has

become popular to use XML to publish data on the internet and searching for useful information from XML

documents has gained wide publicity. A markup language is a way to mark structures in a document. One

standard way to markup the documents is XML. Let’s discuss some differences between searching XML and

HTML documents

Hypertext Markup Language simply known as HTML[1] is the conventional and easy-to-use markup language

for generating both web pages and applications. It’s core virtue is simplicity which allows a wide array of users

to be benefitted. The same asset of simplicity can sometimes turn into a liability with ever- growing users needs

to create their custom tags for simplifying their tasks. In an attempt to satisfy this demand, Extensible Markup

Language has been developed that facilitates general application dependence which in turn further

complements the HTML to be portable and powerful.

A great improvement of XML[2] above HTML is XML allows the linking support to multiple documents

whereas HTML link can only reference a single destination document. XML is a format for representing semi

structured data, since it allows more flexibility by not constraining to single structure. XML is designed to

describe data on the web, basically the Internet. XML allows us to define our own tags. XML Schema or

DTD(Document Type Definition)is used by XML to describe the data structure. XML is designed to describe

the presentation of the content, while XML is to describe the content itself. As said before, XML allows the

user to define his own document structure. Every starting tag needs an ending tag. Hence XML is strictly tag

matching, unlike HTML.

The main differences between using Hyper Text Markup Language and Extensible Markup Languages are: 1)

XML identifies the user search intention, i.e., it identifies the XML node types which the user wants to search

for and search via any other term. 2) XML helps is resolving keyword ambiguity problems i.e in a document a

keyword can appear in a node as a tag as well as node value; and a keyword can appear in the tag name in

different XML node types and each would have different meanings. 3) XML usually gives the final search

results in the form of sub trees a part of the XML document. These sub trees are used to compute a score

which would determine how the result is relevant to a given query. Existing methods developed so far has not

been successful enough to return the query results which were relevant to the search.

Keyword Search [3] is on a steady-rise now-a-days when it comes to querying XML data as it

substitutes the user from understanding the complex schemas of XML document and query languages

such as XQuery and XPath. There are a lot of advanced algorithms and query processing techniques

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 22 Copyright @ 2021 Authors

proposed to address the keyword search over XML data.

Proximity refers to nearness or closeness. Identifying the terms that are identical to one another is a

proposition to make the search more semantic which is known as Proximity Search. In the same way

Proximity Keyword Search is defined to be searching multiple keywords in a list of documents and

retrieving the documents which match all the keywords with a condition that all keywords must be

found with a certain number of words in between them. This certainty usually refers to the distance

between the keywords and it can range from anywhere from 1 to Max (value depends on search

engine). In general proximity keyword search could be termed as adding a constraint of proximity to

simple keyword matching in a set of documents. This characteristic helps us on web searching which

usually consists of vast amounts of unstructured data.

For example, a query could be made for “ Blue Gate House” and it could match the documents “ Mr

Blue has built a beautiful house on the banks of River Gate”, “ The Gate was painted blue and the house

in Red”, “The house was fixed with a gate painted in blue”. Our search intention was not to find out

in which documents it appeared, but how the words have been associated with each other, and the

semantics of the document in which the keywords match. It might not be possible to understand the true

meaning of how the query terms are related to each other, but definitely we can return the query results

based on how the keywords are closely associated in context of relevance score.

Considering the above, our work transforms XML documents of any organization into Ctree[5] which is a set

of relational database tables. With the help of Ctree an index is built on all the words present in the documents.

It provides an interface which assists users (who don't know any query language) of this system to search the

keywords in the XML documents. The keywords submitted by the user are analyzed by filtering out the spaces,

tabs, stop words and further the keywords are converted into lower case. The algorithm locates the elements

which contain the keywords from the Ctree Index table. After locating the elements, with the help of other

entries of the index table , the lowest common ancestor (LCA) of the keywords are located. Edge Distance is

measured from the lowest common ancestor to elements which contain the keywords is computed. Score is

assigned to each XML document based upon the number of keywords matched in the document. Finally based

on the score and edge distance, the lowest common ancestor of the keywords with edge distance is displayed.

II. RELATED WORK
In study number [6], The authors produced a page rank algorithm to find the most relevant answers to a

proximity search query. They used a graph which used the page ranking algorithm to recursively find the nodes

which matched the given query and found an equation to calculate the relevance scores. They summarized all

the selected nodes and compared with the paths visited in the graphs to find the most relevant answers. This

algorithm wouldn't solve our problem as it cant be used on XML documents.

Vajenti et al developed a strategy where all the keywords queried are grouped based on the levels of the XML

tree derived from XML document and grouped based on the node names. The algorithm optimized the search

of keywords in a framework which was not using any kind of indices.Justin et al in their study[8] devised a

ranking algorithm based on the structure of a graph.s. Their work helps to retrieve the results which are related

to a part of sub graph and ranking the results based on that particular part of the sub graph. It’s a time

consuming process to find out how the results are connected.

Ziyang Liu et al [9] proposed an algorithm called Target Search to find out query results based on user

submitted targets. These needs targets to be defined by users. Roko et al developed an algorithm in which the

user has to enter an entity to resolve ambiguity between the keyword search results and then it calculates the

score of the results using fragments of the sub trees matching the keywords asked in the query. They

developed some scoring algorithms for the ranking.

Yushan et al [11] devised an algorithm where the relationship between the keywords in the query are

determined by the content of the XML documents. From the structure of the XML trees, they find the lowest

common ancestor and infer the relationship between the leaf nodes. After evaluating the relationship they

describe the degree of the proximity and score the results. This algorithm falls under keyword search result

ranking schemes.

Motivation : The User is always interested in finding how closely the keywords are associated instead of

where that keywords appeared in a list of XML documents. Though Vagelis at al.[12] proposed an idea which

finds how closely the keywords are associated, it is a bit complicated. It doesn't display the resulting XML sub

tress rank wise. So, we tried to use efficient indexing which helps in computing the LCA with less complexity.

And we focussed on displaying the XML subtrees by ranking them based on edge distance. It pre processes

the keywords entered by the user before searching.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 23 Copyright @ 2021 Authors

III. PROPOSED SYSTEM
The main idea of this paper is to model the XML documents into a Compact tree known as Ctree. This

Ctree is lesser known and used in XML document conversion. But it’s a very convenient way to

represent the XML document into a set of relational database tables and could also be used as an index

for retrieving the keywords efficiently from the database.

The design of the proposed system is divided into three steps as shown in Fig 1. (a) This requires XML

documents to be parsed and stored in relational database in the form of tables. And building an index

on this tabular data. (b) The second major step is to efficiently use the Ctree index to compute the XML

subtrees which contain all the keywords entered by the user. (c)The final step is displaying the XML

subtrees by ranking them based on edge distance from the Lowest Common Ancestor of the elements

which contain the keywords.

Fig. 1 Flowchart of Proposed System.

Before we describe how an XML Document is converted to relational tables, lets understand the Ctree

data structure and its related terms: Ctree[8] is a similar form of binary tree with two levels which is

used to summarize the entire XML document in a compact manner. Each node in CTree has two

pointers, where the group pointer points to the nodes of similar child nodes having the same parent node

and the element pointer stores data about its children nodes as well as respective parent nodes. Building

of group pointer is usually done by identifying all the nodes with similar hierarchical sub structures

who have a common parent node and storing them as a group. In the next level, each node holds the

pointers sequentially to its list of parents and children.

Let’s understand the terminology which helps in defining the CTree: label path, equivalent nodes, Path

Summary. Figure 2 shows an example XML tree and all the definitions are defined referring to it.

Label Path for an XML Tree T is usually defined as the sequence of labels of nodes visited from the root

to the leaf node (N) separated by a special character dot (.) and represented as LP(N). Let us take an

example of XML Tree shown in Fig 2. Node 14 could be visited through nodes 1-13-14, hence its label

path is expressed as dblp.article.title.

Equivalent Nodes for an XML Tree T are usually the list of nodes which have a similar label path. In Fig

2 , nodes 4, 15, 18 are termed as equivalent as they share the same label path dblp.article.author.

Now that we know the terms Label Path and Equivalent Nodes, we use them to define Path Summary

for an XML Tree. Path Summary is usually represented as a Tree where each node is termed as a

Group which matches to exactly one label path LP(N) in a XML Data Tree (T). This Group Node

usually has a set of equivalent nodes. If this set is sorted out based on their parent links, it is known as

Ordered Path Summary. Fig3 shows an example of Path Summary for the XML Tree shown in Fig 2.

Each node is dotted in this tree which identifies its to be a group. The values in the dotted box are the

list of equivalent nodes identified. Every Group has a label associated with it and a pointer to its

parent node. Take the instance of nodes 3,14,17 of the XML Tree shown in Fig (2). Their Label Path

is dblp.article.title and are labelled as Group 2 with name title in Fig 3(a). If you keenly observe every

data tree for a corresponding XML tree has a unique Path Summary.

Lets define Ctree on the terms of Path Summary. It is a tree with a unique root and set of child nodes. Each

child node is termed as Group and denoted by g and contains a set of elements. Each element in the group g is

denoted by g.pid and satisfies :

 Each Group g is defined in two parts : group id (g.id) and group name (g.name).

 Traversal is from top to bottom from groups. It means we can visit the nodes from root to leaves and

hence the edge directions.

 An edge from g1 to g2 represents that g2 is the child node of g1 and g1 is the parent node of g2. In

general if a path exists from g1 to g3, then g3 would be descendant of g1 and g1 the grandparent/ancestor of g3.

 Element k in a group g is denoted by g:k and usually termed as an array index. g.pid[k] points to

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 24 Copyright @ 2021 Authors

elements in g's parent group gp. gp.g.pid(k) is known as the parent element of g:k. If g.k1 and g.k2 are

two elements in a group, and if k1 is less than k2, then g.pid[k1] <= g.pid[k2].

Let us understand the above terminology with the help of an example XML Tree shown in figure 2.

Fig 3(a) shows the corresponding label path summary and Fig 3 (b) shows the corresponding Ctree

after according to the groups definition. The Ctree has a set of nodes with edges towards its child

nodes , each node has a label and a set of values separated by commas.. The set of values represent the

positions of the elements beginning from 0. The three elements in the group 3:author are pointed as

3:0 (first child of article element) , 3:1 (second child of article element), 3:2 (third child of article

element and their values being 0,1,2 with relative reference of nodes in the sub tree.

Fig. 3 Path Summary and its equivalent Ctree for given XML TREE

Searching Keywords: The Ctree index supports a search(word) operation. It usually returns the nodes where

the word matches in the form of a list of group id's (if we specify the group id in the search) or a list of parent

element ids (if we don’t specify the the group id). The index built on Ctree is clustered and inverted. This

inverted index is usually built on three elements namely word id, group id and element id. In a successful match ,

we get the word ids. Once we know the element id's and group id's where the keywords have occurred, we can

use our LCA algorithm to find Lowest Common Ancestor which connects the keywords.

 The algorithm is as follows:

 Locate the group id's and element id's of the given keywords from the index table and store it in two

lists.

 If the group id's of all the keywords are same, check their element id's are equal.

 If they share the same group id – Display their element
id’s along with the given keywords.
 If they are different– find a minimum connecting tree with the lowest common ancestor of the keywords

by retrieving their parent element ids and group ids.
 Else

 Retrieve the depth of each keyword. Let p and q be the keywords which are at maximum

depth and minimum depth respectively.

 Recursively reach to the ancestor of every keyword which is at level(q) from the keywords

which have depth <= p.
 Compute the LCA of the ancestors.
 Rank the results based upon the distance between the keywords.

Score of a XML Document: In addition to distance between the keywords, a metric known as score is

also computed for every XML document. Let’s assume the user has submitted n keywords. If a XML

document contains all n keywords, its score is defined as 100. With n keywords we can find n!

Combinations. If a XML document contains less than n number of keywords say p, its score is defined

as 100 - ((p/n!) * 100). For example, with 3 keywords, there are 6 possible combinations. Score of a

XML document which contains all 3 keywords is 100 percent. Score for an XML document which

contains 2 keywords is 100 -((2/6)*100).

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 25 Copyright @ 2021 Authors

Fig. 4 XML Tree and its corresponding Ctree (Label Path Summary)

Displaying the Results: The user is always interested to know the results which are closely associated , so we

calculate the lowest common ancestor (LCA) for the keywords searched. Sometimes these LCA's are also

termed as Minimum Connecting Trees (MCT's). The LCA's which are computed for a given set of keywords are

stored with the distance between the keywords from the LCA. Every subtree with LCA computed is stored.

These subtrees are ranked and displayed. For example if the user submits the keywords Tom, Dick, Harry

against the XML document of 4(a), Fig 4(b) shows the corresponding Ctree and Figure 5 on the left hand side

shows the possible minimum connecting trees.

Fig. 5 Minimum Connecting Trees for keywords

IV. SYSTEM IMPLEMENTATION
System is implemented in three stages.

Ctree Builder : SAX parser is used for parsing the XML document. JAVA API is used to process the XML

documents and build the Ctree.

Index Engine : It contains the following three components. Analyzer : Helps in analyzing the given keywords

by filtering out the white spaces, converting all uppercase letters to lowercase letters, tokenizing the keyword

strings and deleting the stop words.

Parser: This component parses the given XML documents and builds an index based on the content present in

XML tags.

Ctree: This deals with the creation of necessary tables to build the database for the given XML documents. It

creates the necessary tables such as Elements, groups, FileDetails, ElementPositions etc.

Search Engine : It takes input from the user, starts searching the keywords, ranks the distance between the

keywords and displays the results.

Implementing CTREE

 Ctree index is mapped into four relational tables
Elements : This table has two columns and it stores the elements and their respective parent groups. The

Groups table has four columns and usually stores the group id, group name, the level in which it

appears in the C Tree, the label path and number of descendants.

The CtreeDB table has four columns (Ctree name, the file group, total number of group elements, total

number of elements).

The ElmPosLen table has two columns used to store the position of each element in the group and its

length(label path).

The invert table is an index which uses the the table Words. This table decreases the storage cost as it

effectively maps the keyword to an identifier in the words table and eliminates redundant comparison of strings.

The identifiers matched from the Words table helps to find out the words and its positions from the Hits table

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 26 Copyright @ 2021 Authors

which stores the group id's and element id's.

Fig. 6 Snapshot of Tables populated with values

Tables a, b, c, d shown in Fig (6). shows a snapshot of values populated in Elements, Groups, ElmPosLen,

Words tables when the example XML document Fig 4 is converted into Ctree. An inverted index is built on the

words table based on keywords present in the XML data. This index matches the words which contain the

keywords i.e returns an array of elements (group id's). Once we know the group id's we can compute the sub

trees by tracing the parent id's, element id's and word id's from the inverted index table.

Searching the Keywords
Let's take an example when two keywords k1 and k2are given as input to the search interface. The algorithm

locates the word id’s where the keywords are present from the index table. From the list of wid's, retrieve gid

and eid from the words table, from this list, retrieve the ParElmId and level from ElmPosLen table and groups

table respectively. Now compare the ParElmId's of two keywords. If they are equal, then the element with the

ParElmId is the LCA of the keywords. The distance from the LCA to these keywords is two. If the ParElmId's

of the elements which contain the keywords are not equal, then check whether their levels are equal. If they

are present in the same levels, then retrieve the ParElmId's of the parents of the elements which contain the

keyword. If they are different, then we found the LCA with edge distance 4. If the levels are not equal, then

recursively find out the ParElmId's until the level of the parElmId's become equivalent. Keep adding the edge

distance as we iterate to find out the LCA.

Table 1 List of Keywords matched

“Tom”

Occurrences

“Harry”

Occurrences

w

i

d

g

i

d

e

i

d

w

i

d

g

i

d

e

i

d

2 4 6 1 4 5

3 4 8 6 4 1

3

5 4 1

2

8 4 1

7

9 4 1

9

Keyword Tom has occurred in group 4 four times with wid's 2,3,5,9. Keyword Harry has occurred in group 4

three times with wid's 1,6,8. Lets compute the LCA for word id's 2 and 1.Group 4 contains the word with wid 2

and is present within element with eid is 6. Group4 contains the word with wid 1 and is contained in element

with eid is 5. ParElmId of element with eid 6 is 4. ParElmId of element with eid 5 is 4. Since both elements

ParElmId's are equal, this is the LCA of keywords Tom and harry with edge distance is 2. Lets compute LCA

for the id's 8 and 9. wid's 8 and 9 have occurred in elements with eid's 17 and 19 respectively. Their parElmId's

are 16 and 18 respectively. Since they are not equal, retrieve at which level they have occurred and update the

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 27 Copyright @ 2021 Authors

edge distance s 2. Both the elements are at the same level. Now find out the parents of elements with eid's 17

and 19. ParElmId of 17 and 19 is 4. So add two to the edge distance value. Element with id:4 is the LCA of the

keywords with edge distance 4. Keyword Tom has occurred 4 times while Harry has occurred 3 times in the

document. So there are 12 possible LCA's. LCA's of all the possible combinations are calculated with edge

distance. The LCA with the least distance is displayed first. Table 1 shows the list of values populated for

given keywords.

 Analyzing the Keywords :
When the user submits the keywords, all the white spaces between them are removed, and the

keywords are checked with stopwords list and are removed. Besides this, all the symbols such as

+, -, /, * are also filtered out.
Displaying the Results :
Results are displayed to the user graphically. Details such as field, , group name, combination of

search keywords, time taken to search are displayed to user. The user is also provided with the

option of a link that will display how those keywords are related.

V. COMPARISON OF RESULTS
Differences between CTree Indexing and B⁺Tree
Indexing
We implemented CTree and examined its effectiveness with respect to building index with B⁺

Tree[13]. We used the Generalized Search Tree for the implementation of B⁺ Tree

[14] Indices. We used the DBLP Data set [15]. We compared CTree Index with the method

proposed in [14], which is compatible with keyword searches using inverted list on keywords. We

experimented with the B⁺ Tree Indexes built with an inverted list consisting of keywords.

[15]

VI. RESULTS :

VII. CONCLUSIONS
Unlike previous approaches, this work provides the distance analysis of the keywords. The entire XML

document is stored in the in-memory as the trees are stored in the form of Ctree which are tables. The Ctree

index helps in efficiently computing LCA which is different than [9]. There is no need to maintain separate

index files unlike previous approaches. In future work, we expect to compute lowest common ancestors for all

the given keywords. It can be extended to compute the LCA of any number of keywords by sorting the parent

element ids which contains keywords. Index updation must be taken care. It can be extended to implement

grouping similar minimum connecting trees such as isomorphic trees, filtering out redundant trees.

REFERENCES
[1] Zhifeng Bao , Jiaheng Lu , Tok Wang Ling , Bo Chen, "Towards an Effective XML Keyword Search", IEEE Transactions on

Knowledge and Data Engineering (Volume: 22 , Issue: 8 , Aug. 2010), Page(s): 1077 - 1092

[2] Gelin Deng et al , “Approximate Searching XML Elements Based on Semantic Restrictions”, 2008 International Conference on

Management of e- Commerce and e-Government , 17-19 Oct.2008
[3] Qinghua Zou, Shaorong Liu, Welsley W.Chu, “Ctree: A Compact Tree for Indexing XML Data”, in WIDM 2004.

[4] Yanwu Yang , Bernard J. Jansen , Yinghui Yang , Xunhua Guo , Daniel Zeng, "Keyword Optimization in Sponsored Search
Advertising: A Multilevel Computational Framework", IEEE Intelligent Systems (Volume: 34 , Issue: 1 , Jan.-Feb. 1 2019)

[5] Vajenti Mala , D. K. Lobiyal , "Semantic and keyword based web techniques in information retrieval", 2016 International Conference

on Computing, Communication and Automation (ICCCA), 16 January 2017
[6] Justin J. Song , Inkyo Kang , Wookey Lee , Jinho Kim , Joo-Yeon Lee, "Discussions on Subgraph Ranking for Keyworded Search",

2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom)

and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData)

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-11 Issue-02 2021

Page | 28 Copyright @ 2021 Authors

[7] Ziyang Liu, Yichuang Cai,Yi Shan and Yi Chen, "Ranking Friendly Result Composition for XML Keyword Search" in Springer

International Publishing Switzerland 2015.
[8] Roko Abubakar , Shyamala Doraisamy , Bello Nakone, "Effective Predicate Identification Algorithm for XML Retrieval", 2018

Fourth International Conference onInformation Retrieval and Knowledge Management (CAMP)

[9] Yushan Ye , Kai Xie , Tong Li , Nannan He, "Result ranking of XML keyword query over XML document"
[10] , 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)

[11] Vagelis Hristidis, Yannis Papakostantinou, Andrey Balmin, “Xkeyword: Keyword Proximity Search on XML Graphs”, in 11th

International Conference on Data Engineering, 2002.
[12] Toshiyuki Shimizu1, Masatoshi Yoshikawa2 ,"Full- Text and Structural XML Indexing on B+-Tree" Part of the Lecture Notes in

Computer Science book series (LNCS, volume 3588)

[13] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer, “Generalized Search Trees for Database Systems,” In VLDB, pp.562–573,
September 1995.

[14] https://dblp.uni-trier.de/xml/

https://dblp.uni-trier.de/xml/

