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Abstract 

In this paper we show an alternative way of defining Fourier Series and Transform by using the 
concept of convolution with exponential signals. This approach has the advantage of simplifying proofs  
of transforms properties and, in our view, may be interesting for educational purposes. 

Index terms— Convolution, Fourier Series, Fourier Transform, DFT. 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

1 Introduction 

Fourier Series and Transform [1] are pivotal topics in any course of Signals and Systems for engineering. 
Their use is widespread in most engineering courses generally because it help us to solve and/or understand 
certain operations involving signals (e.g. derivation, integration, translations, etc) that appears in the so- 
called time-domain as other operation (generally simpler) in another domain denominated frequency domain, 
and vice-versa. Our aim in this note is to present a new formulation for Fourier series and transform by 
exploring its close connection with another fundamental operation in the context of signal and systems 
theory that is the convolution [1] (see also Section 2). The main result of the paper is Proposition 3.1 in 
Section 3.1, which presents another formulation for the Exponential Fourier series. In sections 3.2 and 3.3 we 
extend the idea to give a new formulation for the Fourier Transform and Discrete Fourier Transform (DFT), 
respectively. 

 

2 Signals and convolution 

A signal is generally represented as a complex-valued function and which is said to be analog when the 
domain is the set of real numbers, or discrete when the domain is the set of integers1, that is: 

f : R → C (Analog signal) 

t ›→ f (t) 

 

g : Z → C (Discrete-time signal) 

k ›→ g(k) 

As examples we have f (t) = cos( π t) as an analog signal and g(k) = cos( π 10−3k) a discrete signal. We 
∗ 

2 2 

can obtain a discrete signal (f ) from an analog signal (f ) by the process of (periodic) “sampling”, which is 
mathematically implemented as: 

f ∗(k) = f (kT ) 

where Ts > 0 ∈ R is denominated “sampling” interval.2 In this situation, we say that the samples of f are 
spaced in time by an interval Ts, and it is understood that as Ts tends to zero the discrete signal f ∗ tends 
to analog signal f , that is kTs → t and f ∗(k) → f (t). 

Convolution is a binary operation between signals, and we have an analog convolution when both signals 
involved are analog or a discrete convolution when they are discrete signals. We start by defining discrete 
convolution: 
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Definition 2.1. The (discrete) convolution between (discrete) signals f and g results in a signal (represented 
by f ∗ g) which is defined as 

Σ∞ 

(f ∗ g)(k) = f (n)g(k − n). (1) 
n=−∞ 

Remark 2.1. The infinite (complex) series in Equation (1) is required to be absolutely convergent, in order 
convolution could share some important properties of other general binary operations, which we present 
below: 

Commutativity: f ∗ g = g ∗ f , for any signals f and g. 
Obs.: Requires infinite series in Equation (1) to be absolutely convergent. 

Associativity: (f ∗ g) ∗ h = f ∗ (g ∗ h), for any signals f , g and h. 
Obs.: Requires infinite series in Equation (1) to be absolutely convergent. 

Identity existence: There exists a signal “δ”, such that δ ∗ f = f ∗ δ = f , for any signal f .  Signal δ is 
defined as  

δ(k) = 

( 
1 if k = 0 

0,   if k 0 

 
(2) 

We now proceed to define convolution of analog signals (or analog convolution), and as a matter of 
convenience, we will define it as a limit case of discrete convolution. Before all, we introduce the concept of 
approximated analog convolution as shown below: 

Definition 2.2.  Let be two analog signals f and g and consider their discretization f ∗ and g∗, that is f ∗(k) = 
f (kTs) and g∗(k) = g(kTs), where Ts is  the  sampling  interval.  The  approximated  (analog)  convolution 
between (analog) signals f  and g, results in a signal (represented by  f ∗̃g) which is defined as 

Σ∞ 

(f ̃∗g)(t) = T  .(f ∗ ∗ g∗)(k) =  

n=−∞ 

T .f ∗(n).g∗(k − n), kT ≤ t < (k + 1)Ts (3) 

Remark 2.2. It is easy to verify that the approximate analog convolution satisfies the same properties for 
discrete convolution listed in Remark 2.1, but multiplication of discrete convolution formula by the factor 

Ts requires the identity signal to be slightly modified; that is, we need to find an analog signal (δ˜) whose 

discretization results in discrete signal (1/Ts)δ, which is the identity for discrete convolution Ts(f ∗ ∗ g∗). 
While there could be different possibilities, we see that 

( 

δ (̃t) = 1/Ts,    if  − Ts/2 ≤ t ≤ Ts/2 

0, otherwise 
(4) 

is  an analog signal such that its  discretization δ̃∗  results in (1/Ts)δ, as we can see: 
( 

δ̃∗(k) = δ̃(kT  )    = 

 
= 

1/Ts, if k = 0 

0, if k 0 

1 
δ(k). 

Ts 

And so, we have that δ˜ defined in Equation (4) is an identity signal for the approximated analog convolution. 

We define the (exact) analog convolution just by taking Ts → 0 in Equation (3),  and its easy to notice in 
this situation that when Ts is an infinitesimal (dτ ) we have kTs → t, nTs → τ , f ∗(n) → f (τ ), g∗(k − n) → 
g(t − τ ) and the summand in Equation (3) converges to an (Riemann) integral. So that we have: 

Definition 2.3. The (analog) convolution of two (analog) signals f and g is the limit when Ts → 0 of the 
approximated convolution (see Definition 2.2), and it results in a signal f ∗ g defined as: 

∫ ∞ 

(f ∗ g)(t) = f (τ )g(t − τ )dτ (5) 
−∞ 

Remark 2.3. In order the analog convolution to be well defined we require that integral in Equation (2.3) 
to be absolutely convergent, and under this condition we also can easily prove that, similarly to discrete 
convolution, analog convolution is a commutative and associative binary operation; but we have an issue 

related to the existence of the identity signal, since when Ts → 0 in Equation (4) we have that signal δ˜ 

becomes undefined at t = 0. In fact, it is well known that the identity for the analog convolution is not a 
signal (defined as a function), and it is in fact a distribution [3]. We just accept it exists as a “special signal” 

which  is  the  limit  of  signal  δ̃  (defined  in  Equation  (4))  when  Ts  → 0.  It  is  also  represented  by  “δ”,  and  so 
δ ∗ f = f ∗ δ = f for any analog signal f . 

s 
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The convolution of an exponential signal with any other signal results in the same exponential signal multiplied 
by a constant factor. 

2.1 Periodic Signals and Periodic Convolution 

A periodic (analog) signal f has the property that exists a real number T  > 0 such that f (t + T ) = f (t) for 

all t ∈ R, and similarly, for a discrete signal g to be periodic, it must have be an integer N > 0 such that 

g(k + N ) = g(k) for all k ∈ Z. With periodic signals,3 it is common to modify the definition of convolution, 
as presented before, in order the interval of integration (or summation) to be reduced to one period of the 
signal (as opposed to the whole domain),4 and then we have the concept of periodic convolution: 

Definition 2.4. The periodic convolution between signals f and g, both with same period, results in a 

periodic signal (with same period of f and g), represented by f ⊛ g, and which is defined by: 
 

 

(f ⊛ g)(t) = 

∫ T/2 

 

−T/2 

NΣ−1 

 

f (τ )g(t − τ )dτ, f and g are analog signals with same period T (6) 

(f ⊛ g)(k) =  
n=0 

f (n)g(k − n), f and g are discrete signals with same period N (7) 

 

Periodic convolution can be turned into a (regular) convolution when one of the periodic signals is 
switched by its aperiodic component, that is, another signal that corresponds just to one period of it and 
null otherwise: 

f ⊛ g = fc ∗ g = f ∗ gc, 

where fc and gc are non-periodic signals that corresponds to one period of f and g respectively, and are null 
otherwise. 

 

Remark  2.4.  The convolution between a non-periodic signal h and a periodic signal f  results in a signal 

(h ∗ f ) which is periodic with same period of f ,  so we can mix  convolution with periodic convolution, and 
we have the following associative property (in analog or discrete context): 

(h ∗ f ) ⊛ g = h ∗ (f ⊛ g) (8) 

where h is a non-periodic signal and f and g are both periodic signals with same period. 

 

2.2 Some results and properties of convolution 

The most important result, for our purposes, regarding convolution is a very simple fact about convolution 
with exponential signals: 

We make this statement more precise below: 

Proposition 2.5. 
 
 

(a) Analog Convolution with exponential: Let be f an analog signal and consider g(t) = eat, with 

a =/ 0 ∈ C.  Then 

 
Where 

(f ∗ g)(t) = F (a)g(t) (9) 

∫ ∞ 

F (a) = f (τ )e−aτ dτ, 
−∞ 

which is a factor that depends on signal f . The convolution will be well defined only when F (a) results 
in a finite value. 

3We may consider a constant signal as being periodic, where the period is any positive value. In analog case, constant signals 
has no minimum value for the period T , while in discrete case the minimum value for the period is N = 1. 

4In fact, the (regular) convolution between periodic signals may diverge due to the fact that periodic signals are not absolutely 
integrable (analog) or absolutely summable (discrete). 
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Proof.  

 

(f ∗ g)(t)  = 

 
= 

 
= 

 

∫ ∞ 

f (τ )g(t − τ )dτ 
−∞ 

∫ ∞ 

f (τ )ea(t−τ)dτ 
−∞ 

∫ ∞ 

f (τ )eate−aτ dτ 
−∞ 

 ∫ ∞ 

= 
−∞ 

f (τ )e−aτ dτ eat 

= F (a)g(t). 
 

 

(b) Discrete Convolution with exponential: Let be f a discrete signal and consider g(k) = ak, with 

a /= 0 ∈ C. Then 

(f ∗ g)(k) = F (a)g(k) (10) 

Where 

F (a) = 
Σ∞ 

n=−∞ 

 

f (n)a−n, 

which is a factor that depends on signal f . The convolution will be well defined only when F (a) is 
finite. 

 

Proof.  

 
(f ∗ g)(k)   = 

 

= 
 
 

= 

 
Σ∞ 

 

n=−∞ 

Σ∞ 

 

n=−∞ 

Σ∞ 

 
n=−∞ 

 
f (n)g(k − n) 

f (n)ak−n 

f (n)aka−n 

"  
Σ∞

 

= 

# 

f (n)a−n  ak 
n=−∞ 

= F (a)g(k). 
 

 

Remark 2.5.  We also have an equivalent of Proposition 2.5 for periodic convolution: 

(a) Analog Periodic Convolution with exponential: Let be f and g analog periodic signals with pe- 
riod T and consider g the periodic signal obtained from the component gc(t) = eat (a 

0 ≤ t < T and zero otherwise). Then 
0 ∈ C) for 

 

 
Where 

(f ⊛ g)(t) = F (a)g(t) (11) 

∫ T/2 

F (a) = f (τ )e−aτ dτ. 
−T/2 

(a) Discrete Periodic Convolution with exponential: Let be f and g discrete periodic signals with 
period N and consider g the periodic signal obtained from the component gc(k) = ak (a 

0 ≤ k ≤ N − 1 and zero otherwise. Then 
0 ∈ C) for 

 

 
Where 

(f ⊛ g)(k) = F (a)g(k) (12) 

 
NΣ−1 

F (a) = f (n)a−n. 
n=0 
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Below we list some other properties of convolution that might be important for proving some properties 
of Fourier transform: 

(i) Derivative of analog Convolution: Let be f and g analog signals, with f or g differentiable (i.e. f˙ 

or g˙ exists): 

ḟ  ∗ g = f ∗ ġ  = f ∗̇  g 

(ii) Time shifting: Let be f and g  signals and we denote [f ]a  as the shifting of f  by “a” units,  that is: 

[f ]a(t) = f (t − a). Then: 
[f ]a ∗ g = f ∗ [g]a = [f ∗ g]a 

(iii) Time scaling: let be f  signals and denote fa(t) = f (at) for a /= 0, then: 

fa ∗ g =  
1 

(f ∗ g1/a)a or   (fa ∗ g)(t) =  
1 

(f ∗ g1/a)(at) 

 

Obs.: g1/a(t) = g(t/a) 

|a| |a| 

 

All properties also have their counterparts in discrete case. We note that, in fact, these properties show 
us how some operations can be “transferred” from one signal to another under convolution. 

 
3 Fourier Series and Transforms as Convolution with Exponential 

3.1 The Fourier Series 

It is well known that a analog periodic signal f (with period T ) can be written as an exponential Fourier 
series as shown below:5 

f (t) = 
Σ∞ 

n=−∞ 

Cnejnω0t, ω0 = 2π/T (13) 

and  
1 

Cn = 
T 

∫ T/2 

 

−T/2 

 
f (τ )e−jnω0 τ dτ, ω 

 

= 2π/T (14) 

are the Fourier coefficients of the complex series. Also, if we consider t ∈ R representing time (e.g. seconds), 
we have that ω0 represents angular frequency (e.g radians/second), and Fourier coefficients Cn may be seen 
as a (complex) discrete signal whose values are spaced by ω0 in frequency domain. 

To  proceed  with  our  analysis,  we  will  first  consider  the  complex  exponential  “ejnω0t”as  two  different 
signals, as shown below: 

(i) n ∈ Z  is  fixed:  xn(t) = ejnω0t, ω0 = 2π/T , is a analog signal defined in time domain and xn  is periodic 
since xn(t + T ) = xn(t), for all t ∈ R. 

(ii) t ∈ R  is  fixed:  xt(n) = ejnω0 t,  ω0 = 2π/T , is  a  discrete signal defined  in  frequency domain and whose 
values are spaced by ω0 (it is not necessarily periodic). 

We now present the main result, which corresponds to the Fourier series for a periodic signal: 

Proposition  3.1.  Let  it  be  a  periodic  analog  signal  f  with  period  T   and  consider  xn(t)  =  ejnω0 t   and 

x̄t(n) = e−jnω0 t  with ω0 = 2π/T .  Then we have the following pair of equations: 

(f ⊛ xn)(t) =   F (n)xn(t), (15) 

(F  ∗ x̄t)(n) =    T f (t)x̄t(n) (16) 
 

And  

F (n) = 

∫ T/2 

 

−T/2 

 
f (τ )e−jnω0 τ dτ  = T C  , 

where Cn are the Fourier series coefficients of f as defined in (14) 

0 
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Proof.  To prove Equation (15) we use the fact that signals f  and xn  are analog signals with same period T , 
and since xn(t) = eat with a = jnω0, the result is a consequence of convolution with exponential as shown 
in Remark 2.5–Equation (11): 

 

(f ⊛ xn 

 
)(t) = F (a)xn 

 
(t), F (a) = 

∫ T/2 

 

−T/2 

 

f (τ )e−aτ dτ, a = jnω 

and we can represent F (a) as F (n), since a = jnω0. 
To prove Equation (16), we note that F (n) is a discrete signal (aperiodic in general), and its (discrete) 

convolution  with  (also  discrete)  exponential  signal  x̄t(n)  =  an,  where  a  =  e−jω0t,  follows  directly  from 
Proposition 2.5–Equation (10): 

Σ∞ 
(F  ∗ x̄  )(n) = G(a)x̄  (n), G(a) = 

 
F (m)a−m, a = e−jω0 t 

t t 

m=−∞ 

So  we have G(a) = G(t), since a = e−jω0 t, and 

 
G(t) = 

 
Σ∞ 

 

m=−∞ 

 

F (m)ejmω0 t, 

We also have F (m) = TCm, where Cm are the Fourier coefficients of f , then 
 
 
 

and so we get 

 
G(t) = 

Σ∞ 

 

m=−∞ 

 

T Cmejmω0 t  = T 
Σ∞ 

 

m=−∞ 

 

Cmejmω0t  = T f (t) 

(F  ∗ x̄t)(n) = G(a)x̄t(n) = G(t)x̄t(n) = T f (t)x̄t(n). 

 

3.2 The Discrete Fourier Transform - DFT 

Discrete Fourier transform or DFT is a version of Fourier series when signal f is discrete with period 

N > 0 ∈ Z: 

Proposition 3.2.  Let it be a periodic discrete signal f  with period N  and consider xn(k) = ejn(2π/N)k  and 

x̄k(n) = e−jk(2π/N)n  also both periodic with period N .  Then we have the following pair of equations: 

(f ⊛ xn)(k) =    F (n)xn(k) (17) 

(F  ⊛ x̄k)(n) =    Nf (k)x̄k(n) (18) 

And 
 

 
F (n) = 

 
NΣ−1 

 
m=0 

 
f (m)e−jm(2π/N )n 

which is periodic with period N , since F (n + N ) = F (n) for all n. F is denominated Discrete Fourier 
Transform (or DFT) of f . 

Proof. To prove Equation (17) we use the fact that signals f and xn are analog signals with same period 
N ,  and  since  xn(k)  = ak  with  a = ejn2π/N ,  the  result  is  a  consequence  of  convolution  with  exponential  as 
shown in Remark 2.5–Equation (12) 

 

(f ⊛ xn 

 
)(k) = F (a)xn 

 
(k), F (a) = 

NΣ−1 

 
m=0 

 

f (m)a−m, a = ejn2π/N 

and we can represent F (a) as F (n). 
Before proceeding to prove (18) we use (17) to prove the following “ortogonality” condition between 

periodic exponential discrete signals xm(k) = ejm(2π/N)k  and xn(k) = ejn(2π/N)k : 

Corollary  3.3.  Let it be the periodic signals xm(k) = ejm(2π/N)k  and xn(k) = ejn(2π/N)k, then: 
( 

(xm ⊛ xn )(k) = Nδ(m − n)xn (k), with δ(m − n) = 
1,   if m = n 

0,  otherwise 

And so, we have (xn ⊛ xn) = Nxn and (xm ⊛ xn) = 0 for m /= n. 

0 
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Proof. Signals xm and xn have same period N and then considering f = xm in Equation (17) we easily get 

F (n) = Nδ(m − n) by solving the summand. 

We now proceed to prove Equation (18).  We have that F  and x̄k  are both periodic with same period N , 

and since we can write x̄k(n) = an, with a =−jk2π/N  we again use the result of convolution with exponential 
as shown in Remark 2.5–Equation (12): 

 
(F  ⊛ x̄k)(n) = G(a)x̄k 

 

(n), G(a) = 

NΣ−1 

 
m=0 

 
F (m)a−m, a =−jk2π/N 

and we can represent G(a) as G(k). We will show that,  in fact, G(k) = Nf (k),  and for that we use the 
“ortogonality” result of Corollary 3.3: 

 

G(k) = 
 

(G ⊛ xn)(k) = 

 
= 

NΣ−1 

 
m=0 

NΣ−1 

m=0 

NΣ−1 

m=0 

 

F (m)xm(k) 
 

F (m)(xm ⊛ xn)(k) 

 
F (m)(Nδ(m − n))xn(k) 

= NF (n)xn(k) = N (f ⊛ xn)(k), by (17) 

And so we have  
(G ⊛ xn)(k) = (Nf ⊛ xn)(k) =⇒ G(k) = Nf (k), 

which can be easily shown by solving a simple non-singular linear system with N equations and N unknowns. 

 

3.3 The Fourier Transform 

We will present the Fourier transform as a limit case of the Fourier series, as shown in Proposition 3.1, when 
period T of signal f tends to infinity. 

Proposition 3.4. Let be f an absolutely integrable analog signal and consider the analog signals xω(t) = 

ejωt  and x̄t(ω) = e−jωt, then we have the following pair of equations: 

 
 
 

And 

(f ∗ xω)(t) = F (ω)xω(t) (19) 

(F  ∗ x̄t)(ω) = 2πf (t)x̄t(ω) (20) 

∫ ∞ 

 
 

is the Fourier Transform of f . 

F (ω) = f (τ )e−jωτ dτ 
−∞ 

Proof. We consider initially f as being a periodic signal with period T = 2π/ω0 and so, by Proposition 3.1, 
we have the following pair 

 

 
 
 

 
Equivalently 

(f ⊛ xn)(t) = F (n)xn(t) 
2π 

(F  ∗ x̄t)(n) = T f (t)x̄t(n) = 
0 

 
 

f (t)x̄t(n) 

 

(f ⊛ xn)(t)   = F (n)xn(t) (21) 

ω0(F  ∗ x̄t)(n)    = 2πf (t)x̄t(n) (22) 

Now we make T → ∞ and so ω0 → 0 which it is an infinitesimal “dω”. Similarly we have done before in 

Definition  2.3,  when  ω0  =  dω  we  have  nω0  → ω,  F (n)  → F (ω),  x̄t(n)  → x̄t(ω),  since  ω0  is  the  spacing 
of  the  values  of  F (n)  (and  also  of  x̄t(n))  in  frequency  domain.   Then  the  discrete  convolution  in  left-hand 
side  of  Equation  (22)  turns  into  an  analog  convolution  between  F (ω)  and  x̄t(ω).   On  the  other  hand,  the 
circular analog convolution in left hand side of Equation (21) turns into a (regular) analog convolution when 

ω 
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T → ∞. So we get the pair of Equations (19) and (20). Finally, we note that Equation (19) is essentially 
Equation (9) in Proposition 2.5 (with a = jω) and so 

∫ ∞ 

F (ω) = f (τ )e−jωτ dτ, 
−∞ 

which is the Fourier Transform of f . 

 

4 Applications 

4.1 Fourier Series 

The formulation of Fourier series presented in Proposition 3.1, in our view, simplify proofs for some Fourier 
series properties. We list some of them below: 

 

(a) Convolution in time: Let be f and g periodic (with same period). Which is the spectrum of their 
circular convolution? 

 

(f ⊛ xn)(t) = F (n)xn(t), (g ⊛ xn)(t) = G(n)xn(t) 
 

Then 

[(f ⊛ g) ⊛ xn](t) = [f ⊛ (g ⊛ xn)](t) 

= [f ⊛ (G(n)xn)](t) 

= G(n)(f ⊛ xn)(t) 

= [G(n)F (n)]xn(t) 
 

(b) Convolution in frequency: Which periodic signal is obtained by the (discrete) convolution between 
the spectra of f and g, which are periodic with same period? 

 

 

Then 

(F  ∗ x̄t)(n) = T f (t)x̄t(n), 
 

 

[(F  ∗ G) ∗ x̄t](n)    = 

= 

(G ∗ x̄t)(n) = T g(t)x̄t(n) 
 

 
[F  ∗ (G ∗ x̄t)](n) 

[F  ∗ (T g(t)x̄t)](n) 
 = 

= 

T g(t)(F  ∗ x̄t)(n) 

T g(t)T f (t)x̄t(n) 

 = T [T g(t)f (t)]x̄t(n) 

 
(c) Convolution in time with an aperiodic signal: Let be h an aperiodic (and absolutely integrable) 

signal and u a periodic signal. Which is the spectrum of the periodic signal “h ∗ u”? 

(u ⊛ xn)(t) = U (n)xn(t), (h ∗ xn)(t) = H(n)xn(t) 

We note that “H(n)” exists since “h” is absolutely integrable. Then 
 
 

[(h ∗ u) ⊛ xn](t)    = [h ∗ (u ⊛ xn)](t) 

= [h ∗ (U (n)xn)](t) 

= U (n)(h ∗ xn)(t) 

= [U (n)H(n)]xn(t) 
 

Obs.: We can see “U (n)H(n)” as the spectrum of the output signal of a stable Linear and Time- 
Invariant system with impulse response “h”, when the input is a periodic signal “u”. 

 

We believe other properties can be easily deduced from the formulation proposed in Proposition 3.1 for 
the Fourier series. 
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4.2 Fourier Transforms 

We will derive some properties of Fourier transforms using the formulation presented in Proposition 3.4. 

(a) Convolution in time: Let be f and g with Fourier transform F and G, respectively. Which is the 

Fourier transform of f ∗ g? 
 

 (f ∗ xω)(t) = F (ω)xω(t), (g ∗ xω)(t) = G(ω)xω(t) 

Then   

 
[(f ∗ g) ∗ xω](t)   = 

= 

[(f ∗ (g ∗ xω)](t) 

[f  ∗ (G(ω)xω](t) 
 = G(ω)(f ∗ xω)(t) 
 = [G(ω)F (ω)]xω(t) 

 
(a) Convolution in Frequency: Let be f and g with Fourier transform F and G, respectively. Which is 

the inverse Fourier transform of F ∗ G? 

(F  ∗ x̄t)(ω) = 2πf (t)x̄t(ω), (G ∗ x̄t)(ω) = 2πg(t)x̄t(ω) 

Repeating the reasoning used before in item (a), we easily obtain 

[(F  ∗ G) ∗ x̄t](ω) = 2π[2πf (t)g(t)]x̄t(ω) 
 

(c) Derivative in time: Given the Fourier transform of f (differentiable) obtain (when exists) the Fourier 
transform of f˙. 

 
Then 

(f ∗ xω)(t) = F (ω)xω(t), xω(t) = ejωt 
 

(ḟ  ∗ xω)(t) = (f ∗ ẋω)(t) = [f ∗ (jωxω)](t) = jω(f ∗ xω)(t) = jωF (ω)xω(t). 

(d) Shifting in time:  Let  f  with  Fourier  transform F .  which  is  the  Fourier  transform for  [f ]t0 (t)  = 
f (t − t0)? 

 
Then 

(f ∗ xω)(t) = F (ω)xω(t), xω(t) = ejωt 

 
([f ]    ∗ x   )(t) = (f  ∗ [x   ]   )(t) = [f ∗ (e−jωt0 x   )](t) = e−jωt0 (f ∗ x   )(t) = e−jωt0 F (ω)x   (t) 

 

(e) Duality: Let be f (t) with Fourier transform F (ω). Which is the Fourier transform of F (t)? 

(F ∗ xω)(t) = G(ω)xω(t), who is G(ω) ? 
 
 
 
 
 

 
` ˛¸ x 

G(ω) 
 

(f) Time scaling: Let be f with Fourier transform F .  Which the Fourier transform of fa, where fa(t) = 
f (at)? 

 
Then 

(f ∗ xω)(t) = F (ω)xω(t), xω(t) = ejωt 

 
(fa ∗ x  )(t) = 

1 
(f ∗ x1/a)(at), x1/a = x 

 

ω |a| ω 
1 

ω ω/a 

= 
|a| 

(f ∗ xω/a)(at) 

1 
= 

|a| 
F (ω/a)xω/a(at), xω/a(at) = xω(t) 

1 
= 

|a| 
F (ω/a)xω(t) 

We have  

(F  ∗ x̄t)(ω) = 2πf (t)x̄t(ω), t ⇆ ω 

(F  ∗ x̄ω)(t) = 2πf (ω)x̄ω(t), ω → −ω 

(F  ∗ x̄−ω)(t) = 2πf (−ω)x̄−ω(t), x̄−ω(t) = xω(t) 

(F ∗ xω)(t) = [2πf (−ω)] xω(t) 
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(g) Discretization of Fourier Transform: Let be f (t) with Fourier Transform F (ω). How do we inter- 
pret F (nω0), when ω0 is a interval in frequency domain? 

We have 

(f ∗ xω)(t) = F (ω)xω(t), xω(t) = ejωt (23) 

(F  ∗ x̄t)(ω)    = 2πf (t)xt(ω), x̄  (ω) = e−jωt (24) 

Taking ω = nω0 we have 

xω(t) = xn(t) =    ejnω0 t (become periodic with  period T  = 2π/ω0) 

x̄  (ω) = x̄  (n) =    e−jnω0 t (become discrete) 

In equation (23), changing ω by nω0 we get: 

(f ∗ xn)(t) = F (n)xn(t), xn(t) = ejnω0 t (25) 

and, since xn(t) is periodic with period T = 2π/ω0, we have that the convolution in left-hand side of 
(25) is periodic. We now define (from f ) a signal fp periodic also with period T so that f corresponds 

to fp over one period.6 Then, as discussed in Definition 2.4, the (regular) convolution (f ∗ xn) in left-
hand side of (25) can be re-written as a circular convolution (fp ⊛ xn), and then: 

(fp ⊛ xn)(t) = F (n)xn(t) 

By Proposition 3.1, we have that F (n) = TCn, where Cn  are the Fourier coefficients of the series of 
periodic signal fp. 

(h) Spectrum of a sampled signal: Let be f (t) with Fourier Transform F (ω).  Analyze the spectrum of 

f ∗(k) = f (kTs). Let be the Fourier transform pair of f : 

(f ∗ xω)(t) = F (ω)xω(t), xω(t) = ejωt (26) 

(F  ∗ x̄t)(ω)    = 2πf (t)xt(ω), 

and take t = kTs, so that we have: 

x̄  (ω) = e−jωt (27) 

xω(t) = xω(k)    =    ejkTs ω       (become discrete) 

x̄  (ω) = x̄  (ω)    =    e−jkTs ω       (become periodic with period ω   = 2π/T  ) 

Additionally, by making t = kTs in Equation (27) we get: 

∗(F  ∗ x̄  )(ω) = 2πf   (k)x̄  (ω) (28) 

And we note that convolution in left-hand side of Equation (28) is now periodic, since x̄k(ω) is periodic 
with period ωs = 2π/Ts. We define a signal F ∗(ω) (from F , the Fourier transform of f ) that is periodic 
with period ωs so that F corresponds to F ∗ over one period.7 Then, as discussed in Definition 2.4, the 

(regular) convolution (F  ∗ x̄k) in left-hand side of (28) can be re-written as a circular convolution: 

(F ∗ ⊛ x̄  )(ω) = 2πf ∗(k)x̄  (ω)      or      (F ∗/(2π) ⊛ x̄  )(ω) = f ∗(k)x̄  (ω) 

In order to obtain a standard format of Fourier series equations as shown in (Proposition 3.1), we make 

k  → −k  so  that  x̄k  = xk  and  and  define  G(ω) = F ∗(ω)/(2π)  and  also  g(k) = f (−k).  Then  equation 
above can be re-written as: 

 

(G ⊛ xk)(ω) = g(k)xk(ω). (29) 

By comparing Equation (29) above with Equation (15), we note that g(k) can be seen as the “spectrum” 
of periodic signal G obtained by turning F (Fourier transform of f ) periodic with period ωs = 2π/Ts. 
By result of Proposition 3.1 we have the following pair of equations in Fourier series format: 

(G ⊛ xk)(ω)   = g(k)xk(ω) (30) 

(g ∗ x̄ω)(k)    = ωsG(ω)x̄ω(k) (31) 

With g(k) = f ∗(−k) and G(ω) = F ∗(ω)/(2π), where F ∗(ω) is a periodic signal, with period ωs = 2π/Ts 
(Ts  is the  sampling time interval), such that  one period of it corresponds to F , the  Fourier Transform 
of f . 
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4.3 DFT 

(a) DFT versus Fourier series: Lets suppose we have N samples of a (periodic) signal f , which are 
supposed to be obtained from one period T of f , and additionally they are spaced in time by a 
sampling interval Ts (so that T/Ts =  N ).  We  represent these  samples  by  discrete  signal fd  and  its 
DFT by Fd(n). Then by Proposition 3.2 we have 

(fdt ⊛ xn)(k) = Fd(n)xn(k) (32) 

Where fdt represents a periodic signal obtained by repeating fd. 

With samples fd we can obtain the Fourier transform Fa(ω) of analog signal fa (one period of f ), 
whose samples results in fd, by using Equation (31): 

(g ∗ x̄ω)(k) = ωsG(ω)x̄ω(k) (33) 

where g(k) = fd(−k) and G(ω) = F ∗(ω)/(2π).   We have that F ∗ is a periodic repetition of Fa  with 
a a 

period ωs = 2π/Ts. To make fd appear in (33) we make k → −k and so we have: 
 

(f  ∗ x 
 
)(k) = 

ωs 
F ∗(ω)x  F ∗(ω) (k) = x 

 
(k) (34) 

d ω 
2π   a ω 

Ts 
ω 

 

Lets consider ω = nω0, with ω0 = 2π/T and represent xω  as xn and F ∗(ω) as F ∗(n) in Equation (34) 
a a 

above to obtain: 
∗

 
Fa (n) (f  ∗ x  )(k) = x (k) (35) 

 

d n 
Ts 

n 

Since fd is one period of fdt, the convolution in left-hand side of (35) is periodic, and we have 
 

(f   ⊛ x )(k) = 
Fa(n) 

x 
 
(k) (36) 

dt n Ts 
n 

 

and Fa(n) is one period of F ∗(n). Since Fa(n) is one period of F ∗(n), then Fa(n) is the discretization 
a a 

of Fa(ω), i.e., the Fourier transform of one period of f (namely fa), and so Fa(n) = TCn, where Cn 
are the Fourier coefficients of periodic signal f as shown in item (g) of Section 4.2. We then re-write 
(36) as 

(f   ⊛ x )(k) = 
TCn 

x (k) = (NC )x (k) (37) 
dt n Ts 

n n n 

Comparing Equation (37) with Equation (32), we get Fd(n) = NCn, where Fd if the discrete Fourier 
transform of fdt and Cn are the Fourier coefficients of analog signal f whose discretization (N samples 
by period) results in fdt. 

 

5 Conclusions 

We have shown in this note that the Fourier Series and Transform can be formulated as a set of two equations 
involving a convolution with an exponential signal, where in one of the equations the frequency is fixed and 
in another the time is fixed.  We used the idea to show how to prove some properties of Fourier series and 
the Fourier transform, and given its simplicity, we think it could be useful as an alternative approach for the 
study of Fourier Series and transforms. We also mention that other transforms, like Laplace and Z, also can 
be formulated in this way and may could be interesting to be analyzed. 
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