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Abstract: By overcoming several typical shortcomings relating to accessibility, repeatability, concealed fault identification, and 

quantification, the employment of mobile ground and aerial robots provides a potent way to supplement existing visual inspection practise. 

This research introduces a revolutionary ground robotic bridge inspection platform made up of a tough mobile platform with multiple 

calibrated and time-synchronized sensors and an onboard computer. The underside of standard concrete bridges, which is sometimes the 

most difficult to check, is proven to create high-quality 3D point clouds using this platform together with specialised localization and 

mapping software. Using measurements from terrestrial laser scanners, the accuracy of these maps is compared to the actual ground 

surface, and it is revealed that there is just a 1.3% scale inaccuracy altogether. When opposed to employing a terrestrial laser scanner, the 

maps from the suggested system may be created in real time while continually scanning the bridge, significantly cutting down on 

inspection time (TLS). In addition, an unique method for defect identification and quantification in semi-automated and completely 

automated point clouds is presented in this paper. With the former, inspectors may check the bridge remotely using accurate visual 

representations. In contrast to conventional inspections, the latter permits greater fault quantification accuracy while removing inspector 

subjectivity. 

Introduction 

Government agencies around the world are looking toward ad- 

vanced inspection technologies that could help them mitigate the 

financial and societal risks associated with aging public infrastruc- 

ture. Bridges pose a particularly high risk in many jurisdictions 

and are subjected to stringent inspection requirements through the 

application of standards. Such standards provide guidance to 

trained inspectors on how to inspect structures using various tech- 

niques, ranging from visual inspections to specialized inspections 

using equipment such as radar or ultrasound. Many jurisdictions 

(e.g., Ontario, Canada) require visual inspections to be performed 

every 2 years for all bridges with a minimum specified span length 

(Ministry of Transportation Ontario 2008) and more detailed inspec- 

tions are undertaken as warranted by the condition of the bridge. 

Visual assessment performed to uncover material defects, per- 

formance deficiencies, and maintenance needs for bridge elements 

often requires an inspector to gain good visual access to all 

element locations, including the underside of the deck. Where easy 

access is not possible, specialized equipment, such as boom lifts, 

scissor lifts, and so forth, are used to gain access to the underside 

components. While these techniques do allow an inspector 

sufficiently proximate access to the bridge underside to perform a 

visual inspection, they often require closing the bridge to traffic 

temporarily and require specialized training to conduct. Regardless 

of access issues, ensuring consistent quality, repeatability, and 

objectivity between inspections still remains a challenge with 

current visual inspection practices. Missing information, a lack of 

photographic evidence, and variations of up to 50% between 

inspectors, with only 68% of ratings lying within an acceptable 

deviation of 10% from the mean, are some of the key issues that 

persist with purely visual inspection methods (Moore et al. 

2001). 

Many of the shortcomings in visual inspections can be over- 

come using robotics and noncontact sensing technologies. They 

not only provide a means to gain access to critical and hard-to-reach 

bridge elements, for example, the underside of decks, but they 

can also be used to make inspections repeatable and less prone to 

variations between inspections. By creating 3D maps in the field 

(maps refer to point cloud representations, which constitute the spa- 

tial coordinates of a structure in 3D), elements of interest can be 

automatically located on the structure in situ, which makes inspec- 

tions of the same area repeatable and can also provide geometric 

information on identified defects. This paper presents an automated 

robotic ground vehicle equipped with multiple noncontact sensors 

that can be used to generate maps of bridges and enable automated 

defect detection and quantification. 

 

Related Works and Contributions 

The most prevalent method of robot-aided bridge inspection is the 

use of unmanned aerial vehicles (UAVs) for image collection. High- 

quality images of structurally significant areas that are otherwise 
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not easily accessible to humans can be successfully captured using a 

UAV and visually assessed by an inspector (Gillins et al. 2016; Zink 

and Lovelace 2015; Moller 2008). UAVs have also been equipped 

with thermal cameras to assist in visual inspections (Ellenberg et al. 

2016). Such UAV applications simply provide the inspector with a 

more efficient method to locate defects that would otherwise be dif- 

ficult to access. Tagging of the images for localization of the defects 

must still be done manually and damage quantification is not pos- 

sible from images alone. 

Additional valuable information about the structure can be gath- 

ered by generating a 3D point cloud representation of structure, 

enabling the localization and quantification of the defects found in 

the images. The process of generating point clouds from monocular 

imagery is known as structure from motion (SfM), which has been 

applied to bridge modeling and inspection (Khaloo et al. 2018; 

Khaloo and Lattanzi 2017). The 3D SfM models with tagged de- 

fects are useful for tracking defects over time, but the accurate 

quantification or tracking of small changes in defects is strictly lim- 

ited by the quality of the point cloud. This is a common issue with 

SfM-generated point clouds, as they tend to be noisy, often have 

misaligned objects, and even miss crucial areas when little texture 

is available in the images. Previous studies have acknowledged the 

quality issues of point clouds generated using SfM and suggested 

the use of other sensor types, for example, (Khaloo et al. 2018). 

Overall, SfM as a means to generate the point clouds of bridges is 

fraught with challenges when dealing with poor or variable lighting 

conditions, a lack of visual features to track in the images, and the 

absence of a global positioning system (GPS) signal for image 

capture automation and image pose initialization. 

Bridge inspections can be further enhanced using robotics and 

noncontact sensing, for example, autonomous defect detection 

from image data. Cracks can be automatically detected from pixel 

intensity variations (Abdel-Qader et al. 2003; Adhikari et al. 2014; 

Yeum and Dyke 2015; Prasanna et al. 2016), as can delaminations, 

by detecting heat pattern variations from infrared images (Omar 

et al. 2018). For more information on other image-based defect de- 

tection for concrete and asphalt inspection, refer to (Koch et al. 

2015). In the context of this paper, most of the work in the literature 

has been conducted to detect defects in the images, but images 

alone do not allow an inspector to determine scale in the defect 

measurements. Monocular images can provide size information rel- 

ative to the pixels in the images; however, the pixel scale in world 

coordinates is unknown unless some reference scale is provided. 

To determine the size of a defect, each monocular image needs 

a reference scale. Some studies have attempted to extend image- 

processing techniques to determine scale automatically by utilizing 

SfM algorithms (Liu et al. 2016; Torok et al. 2014; Jahanshahi et al. 

2013). These have shown some success but the same challenges 

of creating accurate SfM models, as previously discussed, remain 

apparent in these methods. 

Another possible method for augmenting the structural inspec- 

tions of bridges is to use high-quality stationary scanning equipment, 

such as terrestrial laser scanners (TLS), to generate higher-quality 

point cloud maps. TLS-generated point clouds can be used for con- 

dition assessment and defect detection (Law et al. 2018; Laefer 

et al. 2014; Turkan et al. 2016; Liu et al. 2011). The TLS has also 

been combined with images to improve defect detection (Valença 

et al. 2017), where such methods rely on the high-quality and dense 

maps generated by the TLS sensors. TLS scanning processes are 

often expensive and time consuming and do not offer the same ad- 

vantages as mobile platforms, such as UAVs or ground vehicles. 

There have been a few studies involving sensors mounted on 

ground robotic platforms for bridge inspections, for example, (Kim 

et al. 2017, 2018), where a stop-and-go scan procedure is used, but 

the issue of bridge inspections is not addressed specifically in these 

studies. Similarly, a ground vehicle equipped with a wide array of 

sensors has been presented for bridge deck inspection in (La et al. 

2013; Gucunski et al. 2017), but the results are limited to inspecting 

deck elements only, not the underside, and the process of map 

building and defect quantification has not been addressed. 

Robust map building, rapid scanning from mobile platforms, and 

accurate defect detection and quantification from multiple sensor 

modalities can augment existing visual inspection practice signifi- 

cantly. This work introduces an unmanned ground vehicle (UGV) 

designed specifically for the purpose of bridge inspection. The UGV 

is equipped with various state-of-the-art robotic sensors and a 

mapping approach is proposed to rapidly and robustly create high- 

quality 3D maps with the ability to locate and quantify common 

defects in concrete bridges with minimal human input. The pro- 

posed approach allows for more accurate defect quantification, elim- 

inates human subjectivity, and has the potential to reduce inspection 

time and eliminate accessibility challenges. The main contributions 

of this work are as follows: (1) a multisensor robotic inspection plat- 

form is presented along with a methodology for sensor synchroni- 

zation and calibration; (2) a localization and mapping algorithm 

is presented, enabling continuous scanning for repeatable, high- 

quality 3D mapping of bridges; and (3) a methodology for semi- 

to fully automated defect detection and quantification is discussed 

and results are presented for several important structural defects 

common to the underside of reinforced concrete bridges. While the 

presented platform is ground based, the sensor package, calibration, 

mapping, and algorithmic tools for defect detection and quantifica- 

tion are flexible in the sense that they can be modified to work with 

UAVs as well. Employing a UGV offers some advantages over 

UAVs, such as the opportunity for higher computational power, 

greater payload, substantially lower risk to the sensors and fewer 

operating regulations. 

 

 

Platform Development 

A robotic platform specifically designed for ground-based bridge 

inspection is presented in this section. The mobility is made pos- 

sible through a Husky A200 UGV (Clearpath Robotics, Kitchener, 

Ontario, Canada). This is a skid-steered vehicle capable of reaching 

1 m=s velocity with 4 rubber pneumatic tires, a self weight of 

50 kg, and a payload of 75 kg. The platform is equipped with an 

onboard computer for data collection, running the sensor drivers, 

controlling the UGV and real-time localization, mapping, and data 

processing. A sensor mounting system is used to accommodate all 

the sensors as shown mounted on the UGV in Figs. 1(a and b). 

The major challenge of building a robotic 3D mapping system 

described herein is the sensor integration. The ability to properly 

integrate data from different sensors becomes a challenging task 

when using such a variety of sensor types and makes. In this sec- 

tion, a detailed description of the sensor integration process will be 

presented, including a description of the sensors and details on how 

they are synchronized and calibrated as one sensor unit. 

 

Sensors 

This UGV is equipped with the following sensors: 

• Lidar: Two Velodyne VLP-16 light detection and ranging (lidar) 

sensors are used to map overhead bridge elements and for hor- 

izontal localization. The VLP-16 sensors have 16 rotating light 

beams and the vertical high-resolution lidar weighs 830 g with a 

field of view of 20°, while the horizontal lidar weighs 590 g with 

a field of view of 30°. 

 



Juni Khyat                                                                                                                  ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                                             Vol-12 Issue-07 No.03 July 2022 

Page | 144                                                                                                    Copyright @ 2022 Author 

  

(a) (b) 
 

Fig. 1. Details of the sensors mounted on the UGV: (a) Plan view of the sensors and the computer mounted on the UGValong with the custom mount; 

and (b) labeled sensors: (1) vertical lidar, (2) horizontal lidar, (3) GPS antenna, (4) vision camera, (5) IR camera, (6) IMU, and (7) trigger board. 

 

• GPS: Piksi Multi RTK GPS with antenna, produced by Swift 

Navigation. This GPS package also includes a base station. 

• Vision camera: Ximea XiQ MQ013xG-E2 visible spectrum 

camera by Ximea. This is a USB 3.0 camera with 1,280 × 1,024 
resolution, a maximum video rate of 60 frames per second, and a 
mass of 26 g. The camera is mounted vertically to capture 
images of the underside of bridges. 

• Infrared (IR) camera: Flir Vue Pro infrared spectrum (7.5– 

13.5 μm wavelength) camera with a resolution of 640 × 
512 pixels and a maximum frame rate of 30 Hz. This camera 

is also mounted vertically to capture the underside of the bridge 

being scanned. 

• Inertial measurement unit (IMU): UM7 IMU made by Redshift 

Labs. This IMU has a built-in accelerometer, gyroscope, and 

magnetometer and estimates full 6 degrees of freedom (DOF) 

orientation. The accelerometer measures linear acceleration in 

3 axes, the gyroscope measures angular velocity in about 3 axes, 
and the magnetometer measures the earth’s magnetic field to 

determine an absolute heading estimate. The device weighs 11 g 

and outputs data up to a rate of 255 Hz. 

These sensors are integrated in the Robot Operating System 

(ROS) on the onboard computer, which allows data collection and 

playback to be performed seamlessly. 

Time synchronization between all the sensors is critical to 

estimate the location where the data was captured while the UGV 

is in motion, and is performed using a custom printed circuit board 

(PCB) (Fig. 2). A 1-Hz pulse per second (PPS) signal is generated 

by the GPS and sent to the Ximea and lidar through the PCB to 

trigger data capture. The system clock of the onboard computer is 

synchronized via the PPS signal and timestamped with the GPS 

time over a serial cable from the PCB. As a result, all the scanned 

data is captured at precise intervals and timestamped with the 

same time source. The IR camera is synchronized through software 

triggered by generating a pulse-width modulation (PWM) signal 

output corresponding to the PPS input using an Arduino microcon- 

troller (Fig. 2). With the current configuration, all cameras capture 

images at 1 Hz, whereas the lidars use the 1-Hz signal for synchro- 

nization while capturing scans at 10 Hz. While a 1-Hz image cap- 

ture rate was deemed sufficient for this application, higher rates can 

be achieved with some hardware modifications. 

 

Sensor Calibration 

The calibration procedure to fuse data from multiple sources con- 

sists of both intrinsic and extrinsic calibrations. Intrinsic calibration 

is required for both the vision and IR cameras, while the manufac- 
ture’s intrinsics for the remaining sensors are used. The format 

of the intrinsic camera calibration results is further explained in 

the Map Postprocessing section. Camera intrinsics are calculated 

using the Matlab camera calibration toolbox (Bouguet 2015) for the 

 
 

 

Fig. 2. Sensor synchronization diagram. 
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Fig. 3. Robot platform and sensors transformation tree. 

 

calibration of a single camera using a checkerboard target. The 

intrinsic calibration of the Ximea camera uses 72 images of the 

checkerboard in Fig. 4(a). The mean reprojection error from cali- 

bration is 0.12 pixels. The intrinsic calibration of the IR camera 

uses the checkerboard in Fig. 4(b) as a target. This target can be 

used for thermal calibration as the flat black paint (high emissivity) 

and aluminum (low emissivity) have high contrast in emitted en- 

ergy in the thermal band. The calibration uses 12 images of the 

thermal checkerboard taken with the IR camera, resulting in a mean 

reprojection error of 0.38 pixels. 

The extrinsic calibrations consist of: (1) vertical to horizontal 

lidar; (2) GPS to horizontal lidar; (3) camera to vertical lidar; 

(4) IR camera to vision camera; and (5) IMU to vision camera. 

All extrinsic calibrations are used to convert data between the sen- 

sor coordinate frames. Each extrinsic calibration calculates the rigid 

transformation, represented using the SE(3) Euclidean group, that 

describes the rotation and translation between the two respective 

coordinate frames (Blanco 2014). For example, points in a lidar 

scan can be converted between frames A and B using Eq. (1). TAB 
is the SE(3) transformation matrix to convert a point from frame B 

to frame A. r11 to r33 represent the values that make up the 3D 

rotation matrix. tx, ty, and tz represent the x, y, and z translations, 

respectively 

where required. The manual measurements are primarily used for 

the estimation of tx, ty, tz, as the rotations are estimated to be right 

angles due to the construction of the sensor mounts. A summary of 

the extrinsic calibration tree that enables conversion between all 

coordinate frames is provided in Fig. 3. 

The extrinsic calibration between the vision and the IR cameras 

is refined using the Matlab stereo camera calibration toolbox 

(Bouguet 2015). The same checkerboard for the calibration of the 

IR camera intrinsics is also used for stereo calibration [Fig. 4(b)], as 

it displays the checkerboard pattern in both the IR and vision im- 

ages taken synchronously. In total, 13 image pairs are used in cal- 

ibration to achieve a mean reprojection error of 0.71 pixels. In this 

case, fewer images are used compared to the intrinsic calibrations 

due to the challenges associated with obtaining good-quality im- 

ages where the checkerboard is detected well in both the thermal 

and vision images. 

The vision camera to lidar calibration is refined using the square 

target shown in Fig. 4(c). Scans are taken with the camera and the 

vertical lidar directed at the stationary square target. The points in 

the 3D point cloud generated from the individual lidar scans are 

then projected onto the image plane using the camera to lidar trans- 

formation matrix, the camera intrinsics matrix, and the pinhole 

camera model. These points are overlaid onto the image to visually 
determine the accuracy of the extrinsic calibration. The transforma- 
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tion matrix is then adjusted for rotation and translation until the 

location of the target in the lidar scan visually aligns precisely with 

the location of the target in the image. 
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Extrinsic calibrations all take the form of TAB. These calibrations 

are first done manually from a 3D point cloud of the sensors scanned 
using FARO’s Quantum FaroArm and then refined computationally 

In order to construct a 3D representation of the structure being in- 
spected, two separate estimation processes need to be performed 

simultaneously. An aggregated map of the unknown environment 
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Fig. 4. Calibration targets: (a) vision camera target; (b) IR camera target; and (c) Lidar target. 

 

must be created by combining measurements taken from multiple 

poses and the pose [usually expressed as x; y; z; ϕ; θ; ψ , where 

x; y; z represents position, and ϕ; θ; ψ  represents the orientation 

in the roll, pitch, and yaw angles] of the robot at each measurement 

location must be estimated in order to correctly register each set 

of measurements in a common reference frame. This process of 

localizing the robot and combining measurements into a map is 

well studied in the robotics literature, and referred to as simul- 

taneous localization and mapping (SLAM) (Durrant-Whyte and 

Bailey 2006). SLAM is a challenging problem because localiza- 

tion requires knowledge of the map, while map building requires 

knowledge of where the robot is within this map (Siegwart and 

Nourbakhsh 2004). Therefore, errors in the robot pose estimate will 

propagate to errors in the map and vice versa. Such errors will con- 

tinue to grow over time unless global measurement sources with 

bounded errors are incorporated, such as GPS measurements or 

a return to previously visited locations (loop closure). Despite 

the existence of a large volume of related literature (Durrant- 

Whyte and Bailey 2006; Durrant-Whyte and Bailey 2006), SLAM 

continues to be an active research area with the most recent prog- 

ress being in task-aware SLAM and semantic representations of 

environments (Cadena et al. 2016). 
Localization and mapping are discussed separately next, while 

In the EKF implementation, four sensors provide measurements: 

the GPS, IMU, wheel encoders, and lidars. GPS measurements are 

used only during the initial tests as it is expected that GPS signals 

will not be available while mapping the underside of bridges. Ne- 

glecting the GPS measurements in the formulation of the EKF, 

Eq. (3) shows all the measurements that are incorporated into the 

EKF localizer 

Yt ¼ ½ yωx 
yω

y 
yω

z 
yv

x 
yv

y 
yx yy    yz    yϕ yθ     yψ ]T

 

ð3Þ 

The detailed description of the sources for each of the preceding 

measurements along with the associated measurement models are 

presented in the subsequent section. 

1. IMU: The IMU natively reports measurements for acceleration, 

angular velocity, and magnetic field strength; however, only an- 

gular velocities (denoted by ωx, ωy, ωz) are used to update the 

ϕ̇; θ̇; ψ̇   states. Since these measurements are direct measure- 
ments of the robot state using another coordinate frame, they 

simply need to be converted between the IMU frame and the 

map frame. The resulting measurement model is presented in 

Eq. (4) 

recognizing that these two processes are occurring simultaneously 

in the SLAM implementation. Localization refers to the determi- 
nation of the robot’s pose relative to a predefined set of landmarks. 

In this paper, an extended Kalman filter (EKF) approach is adopted. 

The EKF uses a two-step prediction-correction process to esti- 
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mate the states of a nonlinear system, including the robot and the 

environment (map) features (Moore and Stouch 2014). This is a 

common approach used in robotics, where state predictions are 

made based on a kinematic motion model (nonlinear), and predicted 

states are subsequently corrected based on measurements (i.e., meas- 

urement updates) from multiple sensors integrated on the robot 

(Barfoot 2018). The states of the EKF include the robot pose and 

its derivatives. Additionally, the state vector is augmented using the 

accelerations of the robot in the three Cartesian coordinates and rep- 

resented by an augmented state vector, as shown in Eq. (2): 

2. Wheel odometry: The UGV uses wheel encoders to measure in- 

stantaneous wheel velocity, which can then be used to calculate 

change in position vx; vy . The UGV driver automatically out- 

puts the linear velocity in x, y and the rotation about the z axis 

using the wheel encoder data, therefore these measurements can 

be fused directly in the EKF. Again, these measurements are in 

the robot frame and need to be converted between the robot 

frame and the map frame, yielding the measurement model pre- 

sented in Eq. (5). Only the velocity measurements are used in 

the EKF for the current application 

Xt ¼½ xt  yt  zt  ϕt  θt  ψt ẋt ẏt żt ϕ̇ t θ̇t
 ψ̇ t ẍt ÿt z̈t ] 

ð2Þ 

  yvx  

  
 

  
¼ hwðX tÞ¼  

ẋt cos ψt þ ẏt sin ψt 

−ẋ  sin ψ  þ ẏ  cos ψ 
ð5Þ 

All elements of the state vector and the motion model are 

defined in the discrete domain and not in the continuous domain. 

3. Scan registration: Scan registration is performed with the scans 

from both lidars and provides estimates of the relative position 

v
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between the robot frame at one scan to the map frame. This 

4 × 4 transformation matrix is then converted to the pose and 
orientation measurements of the robot relative to the map frame 

performed between such updates. The resulting multirate EKF is 

shown in Eq. (7) when scan registration measurements are not 

available and in Eq. (8) otherwise 

yx yy yz yϕ yθ  yψ . Since these are direct measure- 

ments of the robot state, the measurement model is as shown in h ðX Þ ¼   
 

  
hIðXtÞ 

 
ð7Þ 

Eq. (6). Scan registration will be discussed in more detail in the h ðX Þ 
following section 

w t
 

½ yx yy yz yϕ yθ  yψ ]T ¼ hsðX tÞ¼½ xt yt zt ϕt θt ψt ]T
 

2 
hIðXtÞ 

3
 

ð6Þ 

 
Since the scan registration process is computationally expen- 

sive, the scan registration measurements are incorporated at a much 

lower rate and continuous updating without scan registration is 

h2ðX tÞ¼ hwðXtÞ ð8Þ 

hsðXtÞ 

For the EKF used in this paper, the motion model is based on an 

omnidirectional robot in 3D (Campion et al. 1996). For the sake of 

brevity, a simplified model for 2D motion is shown in Eq. (9) 
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The accuracy of the prediction step in state estimation could be 

improved by using a motion model that captures the skid-steer 
T ¼ arg minΨðM ; S Þ ¼ arg min 

 1  X 
½m  − T 

 
s ]2

 

kinematic behavior of the UGV (Goorts et al. 2017). For this 

application, however, the 3D omnidirectional motion model was 

deemed sufficient. 

ML;t 
TML;t 

t−1   t TML;t Ns i¼1 

ML;t  i 
 

ð10Þ 

The mapping process in this paper relies on two subprocesses, 

the scan registration, and EKF localization. Scan registration is the 

process of comparing one scan to previous scans to determine a 

transformation between those instances. In this work, each incom- 

ing scan is compared to the point cloud map being produced, as 

opposed to comparing between subsequent scans, which increases 

the robustness of the mapping process as each new scan is matched 

against a more dense point cloud. Two different scan registration 

approaches are tested in this paper. Both approaches rely on the 

iterative closest point (ICP), with slight variations. The ICP is a 

least-squares optimization problem where the cost function being 

minimized is the summation of some distance metric between 

points on the new cloud to points on the reference cloud (Besl 

and McKay 1992; Barfoot 2018). This allows for the transformation 

(translation and orientation) to be estimated between each new cloud 

and the reference cloud. The general ICP approach involves match- 

ing each point on the new cloud to a point on the reference cloud, 

followed by the determination and application of the transformation 

that minimizes the sum of the distance measures. This procedure is 

iterated until some threshold measure is reached (Besl and McKay 

1992). 
The first method of the ICP in this paper is the point to point 

(PtP) ICP, where the sum of the Euclidean distance between points 

on the new cloud to the nearest points on the reference cloud is used 

in minimization. This is expressed in Eq. (10): 

where Ns = number of scan points, mi and si ith corresponding 

map and scan points in the set of map points (Mt 1) and scan points 

(St) and TML;t = transformation from the lidar frame to the map 

frame at time t. The second method is commonly referred to as the 

point to plane (PtPl) ICP, where the cost-minimizing metric is the 

distance between points on the new cloud to planes on the reference 

cloud (Rusu and Cousins 2011). The planes in this algorithm are 

defined by local clusters of points. 

The pseudocode for the SLAM algorithm using PtP ICP is pro- 

vided in Figs. 5 and 6 shows the process in the form of a flowchart. 

This is a special variation of the traditional SLAM solution, such as 

the one given in (Thrun et al. 2004). Given the motion model, meas- 

urement model, and estimates for the motion and measurement 

noise covariances, the robot pose and covariance are estimated at 

each time step, while simultaneously producing a point cloud 

map. The ICP algorithm is implemented using the Point Cloud 

Library (PCL) (Rusu and Cousins 2011). Each incoming scan is 

registered against the map being constructed and that transformation 

is used as an EKF measurement update, then used to transform the 

scan into the map frame, which is then added to the map. The regis- 

tration is also initialized with the most recent estimate of the trans- 

form between the lidar frame and the map frame (based on the EKF 

output). 

Preprocessing of the scans is also performed as needed using 

various filtering techniques to help improve the map building 

i 
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Fig. 5. SLAM algorithm pseudocode. 

 
 

and ICP. For example, a voxel grid filter is used to downsample the 

point clouds prior to the ICP. Given the higher point density with 

proximity to the sensor, the ICP tends to give higher weights to the 

fitness of the scan near the lidar. A voxel grid filter helps to smooth 

the point density throughout the scan, thus alleviating the afore- 

mentioned problem. Other techniques are used to further improve 

the ICP, including cropbox filters to remove ground points, vegeta- 

tion, and points corresponding to the robot or operator, as well as a 

dynamic radius outlier filter to remove outlier points in the scan 

while taking into consideration the density variation in the scan data 

(Charron et al. 2018). 

 
Mapping Results 

Mapping tests were performed at three locations. The first location 

was the University of Waterloo campus and the next two locations 

were select concrete bridges in the Region of Waterloo. The three 

locations were selected to test the accuracy and robustness of the 

mapping and defect detection algorithms. For mapping, the cam- 

pus location provided an easy localization case that allowed for 

confirmation of the SLAM approach. The first bridge location 

provided a short-range mapping case within a difficult mapping 

environment, whereas the second bridge allowed for large-scale 

mapping of a bridge with distant features. The following subsec- 

tions will discuss the site locations in more detail and present the 

mapping results. 
 

University of Waterloo Campus 
The first test location was the University of Waterloo campus 

between the Engineering 3 and Centre for Environmental and In- 

formation Technology (EIT) buildings, as shown in Fig. 7. This test 

area is relatively open, enabling the UGV to receive GPS data. The 

location provides flat ground and a heavily structured environment 

for the EKF and ICP to perform well. These tests are used to con- 

firm the functionality of the localization and mapping modules. 

With this data set, the results from both the PtP and PtPl ICP yield 

similar findings. The mapping results without utilizing the GPS 

measurements for the updates are shown in Fig. 8, depicting a 

top-down view of the map with a callout showing an isometric view 

of a portion of the map. Large detailed maps were produced where 
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Fig. 6. Conceptual overview of SLAM algorithm. 

 

the robot was able to accurately track its pose and map the envi- 

ronment, despite traveling large distances with many changes in 

orientation. The results without GPS show some error buildup over 

time due to the drift in the ICP and other measurement sources, 

which is corrected using GPS if available. Fig. 7 shows this map 

overlaid onto satellite imagery of the site to quantitatively assess the 

quality of the map. These results show that accurate short-range 

mapping without GPS is achievable; however, the use of GPS when 

available can result in more accurate large-scale maps by correcting 

the pose intermittently. 
 

Conestogo River Bridge 
The second test location is the Conestogo River bridge, situated at 

the intersection of Northfield Drive and the Conestogo River in 

Waterloo, Ontario. This bridge is a four-span cast-in-place concrete 

girder bridge, with three interior concrete piers situated within the 

Conestogo river. This bridge was constructed in 1960 and measures 

approximately 108 m in length and 4 m in height at its lowest lo- 

cation. The southernmost bay of the bridge was scanned as this area 

is easily accessible for the UGV. The mapping was done by driving 

the UGV under the bridge in a straight line directly under one of the 

girders to simulate a girder inspection. For this data set, the ICP 

PtPl performs significantly better compared to the PtP method. The 

PtP method creates significant drift in the mapping and this drift 

was eliminated with the implementation of the PtPl. The drift, 

which did not occur in the first location, can be explained by the 

lack of good distant features to localize against. The resulting point 

cloud using the ICP PtPl is shown in Fig. 9. Even without the GPS, 

an accurate map of the bridge is created with little observable error 

or drift in the final map. Further analysis on the accuracy of this 

map will be presented in the following section. 

Fairway Bridge 
The third test site is a newer bridge located at the intersection of 

Fairway Road North and the Grand River in Kitchener, Ontario. 

This is a four-span concrete box girder bridge constructed in 2012 

that is approximately 250 m in length and 9 m in height (at its lower 

location). This bridge is significantly longer and higher than the 

second test location. The bridge and the results obtained from 

the scan are shown in Fig. 10. The results from this test site also 

reinforce the robustness and scalability of the robot platform and 

the mapping algorithm. This test case shows that environmental 

conditions similar to those of the Conestogo River bridge can still 

result in large-scale, low-drift maps. In this case, mapping the dis- 

tant features over a much greater distance was just as successful, 

demonstrating that this procedure can be applied to a variety of 

bridge environment conditions. 

 

Evaluation Metrics 

A detailed evaluation of the scans and relevant bridge features for 

the Conestogo test site are presented in this section. The accuracy 

of the UGV-generated point cloud for this test site is evaluated in a 

variety of ways, both qualitatively and quantitatively. The 3D visu- 

alization of the point cloud enables the detection of objects of in- 

terest, such as concrete spall areas or cracks. The detected objects 

in the point cloud are then compared in terms of shape, size, and 

location to the visual inspection results. Quantitative evaluation is 

performed by comparing the UGV-generated point cloud against 

a reference point cloud constructed using a Faro FocusM laser 

scanner. This system uses a rotating mirror to generate point clouds 

with full 360° horizontal coverage and vertical range of 305°. The 

scanner is capable of measuring 488,000 points per second at a 
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Fig. 7. Satellite view of first test location with overlay of map created using the described SLAM algorithm. (Imagery @2018 Google, Map data 

@2018 Google.) 

 
 

 

Fig. 8. Map created outdoors using the described SLAM algorithm at first site location. 
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(a) (b) 

(c) (d) 

Fig. 9. Conestogo River bridge images and mapping results: (a) isometric view of bridge soffit, looking northeast (image by Nicholas Charron); 

(b) isometric view of bridge deck soffit, looking southeast (image by Nicholas Charron); (c) bridge soffit 3D map, looking north; and (d) bridge soffit 

3D map, looking south. 

 

 

maximum distance of 70 m with ranging error of 3 mm measured 

at 25 m. A rendering of the reference point cloud generated using 

the Faro FocusM is shown in Fig. 11. 

Although the laser scanner achieves a high level of accuracy, 

this method of point cloud generation is time consuming and is 

associated with large computational demands. The Faro FocusM 
scan of the Conestogo test site required approximately 2.5 hours 

to complete scans from 6 different locations and1h of semimanual 

postprocessing. In comparison, the same scan using the proposed 

UGV system was completed in approximately 10 min with the 

results automatically processed within minutes. 

A wide variety of techniques exist for the quantitative evaluation 

of point clouds, most of which can be generally categorized as con- 

trol point approaches, subset approaches, or full cloud approaches 

(Lehtola et al. 2017). The control point approaches typically involve 

comparing the Euclidean distance between two or more features in 

each point cloud. The subset and full cloud approaches apply vari- 

ous metrics to compare aspects such as local noise or density to a 

portion of the cloud and entire cloud respectively (Lehtola et al. 

2017). Since only a portion of the clouds overlap in this case, full 

cloud metrics are rendered unsuitable. A control point method and a 

subset approach are used to evaluate the scale accuracy and local 

noise level, respectively. 

After registering the two point clouds, a total of 100 evenly 
spaced cross sections are cut along the length of the scanned portion 

of the bridge. Each cross section has a thickness of 20 mm, mean- 

ing all points falling within = 10 mm of each cross-sectional 

plane are grouped into subsets. Fig. 12 compares the cross-sectional 

geometry of the reference and UGV-generated point clouds for three 

different cross sections, namely S1, S2, and S3, corresponding to the 

start, middle, and end of the first bay. 

Although the UGV-generated point cloud shows higher noise 

levels compared to the reference cloud (represented graphically by 

surface thickness), the cross-sectional geometries of the two clouds 

are consistent throughout the length of the bridge bay. To quanti- 

tatively compare the scale of the two clouds, the girder depth is 

calculated at each cross section. For the UGV-generated cloud, 

the girder depth was measured to the centroid of the surface. Table 1 

summarizes the maximum and average error for the inspected 

girder (directly above the UGV) and an adjacent girder (associated 

with a sparser set of measurements associated with the same pose). 

An average scale error of 1.3% for the inspected girder is indicative 

of the relative accuracy in mapping and defect detection using 

the UGV-generated point cloud. For example, when using the 

UGV-generated cloud, one can expect error on the order of only 

1.3% relative to the FARO FocusM-generated cloud. 

The local noise level in a 3D point cloud can be approximated 
based on the residual between a given point and the best-fitting 

plane to the neighboring points (Lehtola et al. 2017; Khaloo et al. 

2018). To compare the noise level between the two point clouds, 

subsets are extracted from two different locations: the underside of 

a girder and the side of a girder. In each case, the subset spans ap- 

proximately 2 m. A best-fit plane is computed for each subset and 

the residual distance from each point to the plane is computed. The 

maximum and average residuals for each subset and each cloud are 

summarized in Table 2. 

The local noise for the UGV-generated cloud is higher than the 

reference cloud, which can be a direct result of two sources of error: 
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1. errors in the localization, ICP, and calibrations, or 2. errors in the 

sensor due to accuracy limitations (compared to the more accurate 

TLS scanner). The exact source of this error is still unknown. It is 

expected that more advanced SLAM algorithms and more sophis- 

ticated calibration procedures will lead to improved mapping and in 

turn will reduce noise. Nevertheless, the calculated local noise lev- 

els herein are considered acceptable for inspection purposes, as the 

primary objective is to demonstrate a platform to augment visual 

inspections. While the scale accuracy directly affects the quantifi- 

cation of defects, such as crack lengths and spall areas, the noise 

 

 
 

  
(a) (b) 

 

(c) (d) 

Fig. 10. Fairway Road bridge images and mapping results: (a) isometric view of bridge soffit, looking east (image by Nicholas Charron); (b) isometric 

view of bridge soffit, looking southeast (image by Nicholas Charron); (c) bridge soffit 3D map, looking southeast; and (d) bridge soffit 3D map, 

looking northeast. 

 

 

 

 

Fig. 11. Scan results of Conestogo River bridge using the Faro Focus. 
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Fig. 12. Cross-section comparison showing the UGV-generated Conestogo River bridge map versus the map generated by the Faro Focus. 

 

 
Table 1. Point cloud scale comparison 

 
 

Metric Inspected girder Adjacent girder 
 

Maximum error 44.5 mm (5.7%) 83.2 mm (10.7%) 

Average error 10.2 mm (1.3%) 33.6 mm (4.27%) 

Standard deviation 8.6 mm — 18.6 mm — 

 

 

Table 2. Point cloud noise level comparison 
 

 

Underside of girder Side of girder 

 

 
Platform 

Average 

residual 

(mm) 

Maximum 

residual 

(mm) 

 Average 

residual 

(mm) 

Maximum 

residual 

(mm) 

Faro Focus 3D 

UGV 

−1.89 

−5.47 

5.64 

30.52 

 0.99 

11.17 

5.29 

40.34 

 
the camera positions relative to the robot from the calibration 

process. The transformation between the robot frame and the map 

frame is exported automatically during the mapping process each 

time an image is captured. The diagram in Fig. 3 shows the trans- 

formation tree for this process. 

To colorize the cloud, the transformation chain is used to map 

3D cloud coordinate points to an image pixel that captures that 3D 

point. The color data from the image pixel can then be assigned to 

the corresponding point in the point cloud. One common method 

for mapping cloud points to image pixels is to project the 3D points 

to the image plane. This would be done using the pinhole camera 

model (Sturm 2014) combined with the transformation from the 

map frame to the camera frame. Once converted, the projected 

points can be assigned a color based on their location relative to the 

pixels on the image plane. The projection from 3D coordinates to a 

pixel coordinate can be done using Eq. (11): 

s½ u    v    1 ]T  ¼ K½ RCM tCM ]Pk ð11Þ 

level presents challenges when using the point cloud to calculate 

volumes, which is not a primary objective in visual inspections. 

 

Map Postprocessing 

where s = scaling constant, u, v = integer pixel coordinates on the 

image plane, and RCM and tCM = respective 3 × 3 rotation and 

3 × 1 translation matrices that correspond to the transformation 
from the map frame (Fℳ) to the camera frame (FC or FF corre- 

sponding to the vision and IR cameras, respectively). Pk and K 

Using the final point cloud map of a bridge combined with the im- 

age data, calibration results, and a full robot trajectory, the data can 

be combined into a format that can assist bridge inspectors. First, 

using the visual images, the color information can be used to color 

the point cloud. This colorization enables two major improvements: 

inspectors can now perform remote inspections using the colored 

map and the results from the automated defect detection can also be 

(Zhang 2002) are shown expanded in Eq. (12). Pk is the kth homo- 

geneous coordinate point in the point cloud, presented in the map 

frame Fℳ. K is the intrinsic camera matrix that is calculated from 

the calibration. K consists of the focal lengths (fx and fy) and the 

image center location (cx and cy) in both x and y directions. All 

values in K are provided in units of pixels 

validated by observing a realistic rendering of the structure. The 

second step to the proposed bridge inspection procedure is to per- 

form the defect detection on the images and transfer that data onto 

the point cloud for quantification and tracking. This step can be 

done with both sets of images to detect surface and subsurface de- 

fects. The following sections will discuss these two aspects in detail. 

fx 0 cx 

k 
M 

0 0 1 

2 
x 

3 

¼ 6
4 z 75

 
 

 

 

ð12Þ 

 
Point Cloud Colorization 

The image data obtained from the vision and IR cameras during 

the scan can be used to colorize the 3D point cloud map of the 

bridge. The color information can be transferred to the cloud using 

the continuous 6 DOF pose estimate from the SLAM process and 

A few problems arise when using this projection process for col- 

orization. First, this method would not account for occlusions, 

which becomes an increasingly bigger issue as the cloud size and 

complexity increase. For example, both surfaces on a single bridge 

beam may project onto the image plane, whereas the image can 

only capture one of those planes since the other is occluded. Fur- 

thermore, surfaces that are normal to the image plane would also 

1 
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create problems when colorizing. Thus, an alternate approach is 

followed, where the points on the image plane are mapped to cor- 

responding points on the 3D point cloud using the inverse of the 

pinhole camera model. 

This colorization process iterates through all i; j pixels of all n 
images taken. The first step of this process is to remove distortion in 

the current image. This is done using Eq. (13) and the distortion 

parameters obtained during camera intrinsic calibration (Heikkila 

and Silven 1997) 

u~ ¼ uð1 þ k1r2 þ k2r4Þ þ 2p1uv þ p2ðr2 þ 2u2Þ 

v~ ¼ vð1 þ k1r2 þ k2r4Þþ 2p2uv þ p1ðr2 þ 2v2Þ 

r2 ¼ u2 þ v2 ð13Þ 

where u~ , v~ = distorted image coordinates, k1, k2 = radial distortion 

coefficients, and p1, p2 = tangential distortion coefficients. 

The second step is to convert the undistorted pixel coordinates on 

the current image plane to points in the camera coordinate frame. To 

do so, the inverse of the camera matrix, K, is taken and premulti- 

plied on both sides of Eq. (14) to isolate Pi;j, the coordinates of the 

i; j th pixel point in the camera frame FC for the current image. 

Eq. (14) differs from Eq. (11) since the points are being calculated in 
the camera frame, therefore RCM and tCM are not applied. Isolating 

for Pi;j yields Eq. (15). Eq. (14) is iterated through each i; j th pixel 

as opposed to Eq. (11), which is iterated through each individual 

point in the cloud 
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Fig. 13. Point cloud colorization illustration. 

s½ u    v    1 ]T  ¼ KPi;j ð14Þ or until a set number of maximum iterations is reached. This incre- 

mental ray extension and contact check process is necessary, instead 

Pi;j x   y   z T K−1s u    v T 
s

 
u − cx v − cy 

1
 T of immediately colorizing the closest point to a pixel, because the 

C ¼½  ] ¼ ½ 1 ] ¼ fx
 fy 

ð15Þ 

closest point may not necessarily be along the path of the ray. This 
algorithm thus ensures that the cloud point colored is the first point 

that the ray contacts, not simply the closest point to the pixel. This 

The scaling constant, s, is equal to the distance from the camera 

optical center to the image plane in this application and is obtained 

by multiplying the focal length in the pixels by the physical pixel 

size, which is obtained from the manufacturer. 

Once the u, v points are represented in the camera coordinate 

frame, it is possible to convert the coordinates of the camera optical 
center—located at (0, 0, 0) in the camera frame—and the pixel 3D 

coordinates (Pi;j) to the map coordinate frame. This is done using 

the transformation between the camera and the robot frame, TCR, 

and the transformation from the robot frame to the map frame, TMR. 

A linear ray direction vector can then be calculated by subtracting 

the camera optical center from the pixel point on the image plane. 

The ray is extended in the calculated direction until this ray makes 

contact with (or within a specified threshold distance of) a point on 

the point cloud, as illustrated in Fig. 13. 

For each pixel, the calculated ray is extended incrementally and 

a KD-tree search algorithm (Bentley 1975) is performed at each 

iteration to check if the endpoint of the ray is within a specified 

distance threshold from a point in the point cloud. This process is 

accelerated in two ways, first by eliminating all points in the cloud 

that are not located within the image plane (i.e., have u, v coordi- 

nates outside of the active area) when projected using the camera 

model in Eq. (11). This ensures that the search does not check 

points that are irrelevant to the current image. Second, the rays 

are incrementally extended by a distance equal to the distance be- 

tween the ray endpoint and the closest point on the reduced cloud. 

After each ray extension, if a point is found to be within the thresh- 

old distance from the ray endpoint, then that point is assigned the 

color of the pixel. Otherwise, the ray is extended. This process con- 

tinues until the current pixel is successfully mapped to a cloud point 

process is summarized in Fig. 14. 

This colorization process can be done automatically with both 

the vision and the IR images. Fig. 15 shows a bottom view of the 

colored point cloud using both cameras and Fig. 16 shows an iso- 

metric view. Note that the vision images are in color, but the lack of 

exposure under the bridge makes the colorized point cloud pri- 

marily gray. In both sets of colorized clouds, the colorized portion 

depicts a concrete girder running in the approximate center of the 

colorized portion, with concrete deck soffit on either side. 

 

Automated Defect Detection 

Typical defects in concrete structures, such as spalls, delaminations, 

cracks, and exposed rebar, are important elements of bridge visual 

inspections. The terms cracks and exposed rebar are self-explanatory. 

A delamination is concrete that is internally separated, but not 

fully detached from the main structure. It is caused by internal 

forces, such as expansion due to the corrosion of the rebar. As a 

delamination worsens, it will eventually become a spall, which is 

an area where the concrete has fully separated and fallen off the 

structure. 

Images can provide important information regarding such de- 

fects and about the general condition of reinforced concrete bridges. 

In addition to defects detected using images in the visual spectrum, 

IR images can be used to detect delaminations. The air gap created 

by delaminations acts as insulation between the delaminated con- 

crete and the remaining bridge deck, thus causing variations in the 

heating and cooling patterns of the concrete at the location of the 

delamination. For example, a delaminated mass exposed to solar 

heating will appear warmer in an IR image, as the heat flow is 
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Fig. 14. Point cloud colorization algorithm pseudocode. 

 

 

trapped in the delaminated concrete by the air gap (Clemena and 

McKeel 1978). 

In addition to manual detection from images, various algorithms 

exist to automatically detect defects from both visible spectrum 

and IR images. Simply knowing there is a defect on a bridge, while 

useful, does not complete the picture; both the quantification and 

localization of such defects are important. The ray tracing algo- 

rithm for colorizing the point cloud (Fig. 14) can facilitate this 

quantification and localization. As a proof of concept, two semi- 

automated (semiautomated being a process that requires very little 

human intervention with some minor tuning by the inspector for 

best results) algorithms for defect detection in images are consid- 

ered to localize the damages on a 3D point cloud generated using 

the UGV inspection platform. These algorithms are edge detection 

(Parker 2011) and thresholding (Otsu 1979). 

Edge detection presents poor initial results for this data and 

hence thresholding with connectivity filtering is used to complete 

the preliminary defect detection in this study. Additionally, the 

thresholding operation is more applicable than edge detection for 

delamination detection in thermal images as well as for finding 

exposed rebar in the concrete. There are no significant cracks on 

the bridge that are not part of delaminations; as such, only delami- 

nation and exposed rebar results are detected for localization and 

quantification on the point cloud. Fig. 17 shows examples of thresh- 

olding used for detecting exposed rebar in the vision images and 

delaminations in the IR images. 

Fig. 18(a) shows the areas of exposed rebar on the bridge deck 

soffit and the concrete girder. These points on the cloud are high- 

lighted for better visibility. Two small areas of exposed rebar are 

detected and localized on the point cloud. The locations of the ex- 

posed rebar were confirmed through visual site inspection. 

Fig. 18(b) shows the areas of delamination detected in the IR 

images. The results of transferring the delaminated areas from 

IR images to the point cloud show a large number of delaminations 

located in the middle section of the bridge soffit. Few delaminations 

exist on the concrete girder or on the outside section of the soffit. 

Not all areas of delamination are able to be confirmed precisely by 

human inspection, as hammer sounding is not feasible at all loca- 

tions; however, these results were consistent with the delaminations 

that were visually located during the site inspection. 
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Fig. 15. 3D bridge point cloud with bottom view of deck soffit: (a) cloud colorized with vision camera; and (b) cloud colorized with IR camera. 

 

 
 

Fig. 16. 3D bridge point cloud with isometric views: (a) cloud colorized with vision camera; and (b) cloud colorized with IR camera. 
 

 

 

The quantification of the exposed rebar or delaminations can be 

performed by measuring the lengths using standard tools for 

manipulating a 3D point cloud. Fig. 19 shows an example of es- 

timating the size of delaminations on an enlarged section of the 

point cloud. The axes of the figure and bounding box dimensions 

are shown for size reference. The bounding boxes are used to 

estimate size, as this step is similar to what would be done in the 

field. The delaminated areas from the top of the figure to the bot- 

tom of the figure are estimated to be 0.48, 0.22, and 0.33 m2. 

The accuracy of these quantifications was not tested and compared 

to actual onsite measurements by inspectors due to accessibility 

limitations. However, it can be assumed that these errors would 

be of similar magnitude to the errors determined in the Evaluation 

Metrics section because the scale given to calculate distances from 

the image data is determined by the lidar-generated point cloud. As 

a result of the fusion of the lidar and vision sensor data, the level of 

accuracy for defect quantification is expected to be significantly 

more accurate than current visual estimates from trained inspectors, 

especially for areas of difficult accessibility. 

The results of applying semiautomated defect detection algo- 

rithms to images show that the defects detected in the visible spec- 

trum and IR images of reinforced concrete images can be localized 

and quantified onto a 3D point cloud using a SLAM algorithm for 

the pose estimate of the robot, transformations based on sensor cal- 

ibration, and image pixel data. This process exhibits success in 

detecting and quantifying exposed rebar and delaminations. Even 

though the bridges that were inspected did not have any visible 

cracking, it is expected that such features can also be detected 

and quantified using this methodology. 

 

Conclusion and Future Work 

Increasing the quality of critical infrastructure inspections remains 

of high importance for many municipalities burdened with aging 

infrastructure, specifically bridges. Infrastructure research is shifting 

to find new ways to improve upon current bridge inspection prac- 

tice; the use of robotics and remote sensing is a natural progression 

in this regard. This work proposes a robotic bridge inspection frame- 

work, introducing a solution that will help increase inspection 

accuracy, eliminate human subjectivity, decrease inspection time, 

and has the potential to be implemented on aerial or ground robots 

to enable easy inspection of hard-to-access bridges. The platform 

shown herein consists of a UGV equipped with an onboard com- 

puter and several state-of-the-art robotic sensors. A procedure for 

continuous scanning of the underside of concrete bridges is also 

introduced for accurate 3D mapping and defect quantification. 

 



Juni Khyat                                                                                                                  ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                                             Vol-12 Issue-07 No.03 July 2022 

Page | 157                                                                                                    Copyright @ 2022 Author 

 
 

Fig. 17. Semiautomated defect detection using thresholding: (a) vision camera image; (b) IR camera image; (c) detected rebar in the vision camera 

image; and (d) detected delaminations in the IR image. 

 

 

Fig. 18. 3D bridge point cloud labeled with defects: (a) points colored red to show exposed rebar; and (b) points colored red to show delaminations. 
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Fig. 19. Point cloud labeled to show delamination sizes. 

 

 

Tests conducted on three different sites show that high-quality 

maps can be generated using the proposed UGV-based platform 

rapidly. Defect detection and quantification results performed on 

the scanned information show that it is possible to achieve suffi- 

cient accuracy for typical defects of interest in concrete bridge in- 

spections. The procedure presented to colorize the point clouds 

demonstrates the potential to both visualize and quantify a range 

of defects observed from multiple sensor modalities. 

The presented platform and the methodology are merely first 

steps in the process of the adoption of robotics in bridge inspection 

applications. Many improvements can be pursued within the pro- 

posed framework; the quality of mapping can be increased signifi- 

cantly with advanced SLAM techniques, such as a graph SLAM 

problem formulation, while also incorporating full loop closure 

and visual odometry sources. With such techniques, it may be 

possible to achieve measurement accuracy very close to that of the 

TLS. Additionally, there is ongoing work by the authors on deep 

learning approaches to image pixel classification and point cloud 

analysis for determining geometric defects (once more high-quality 

maps can be achieved). Future work will include identifying the 

level of accuracy of defect detection and extracting volumetric 

information from defects, while also providing a measure of the 

minimum defect sizes that can be detected with this procedure. 
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