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Abstract— To become good at any sport requires a large 

investment in training. Traditional training approaches, 
such as partner-led, expert-led or video-recorded training, 
can significantly improve progress. However, these 
techniques lack detailed information about player 
movements, are time consuming, and are limited to 
specific locations. In contrast, wearable sensor devices can 
enhance training with high mobility, ubiquity, and 
intelligent feedback. This article presents a wearable 
platform that provides corrective feedback to baseball 
players based on multidimensional physiological data 
collected by a body sensor network. We use a swing model 
that defines the actions that must be performed correctly, 
in the correct order, and with precise timing between the 
limbs. The system uses motion logging to evaluate baseball 
swings. Transcripts can be used to simplify the 
interpretation of complex movements and reduce the size 
of data that needs to be sent over the network. Use 
transcripts to measure coordination between body limb 
segments and joints. The transcript detects the start times 
of significant events and analyzes the adjustments between 
these times. Swing quality is assessed by comparing the 
alignment between segments of a test swing to that of a 
sample swing. 

Index Terms—Body sensor networks, inertial sensors, motion 
transcripts, signal processing, sports training. 

 
 

I. INTRODUCTION 

 

EARNING to perform well in sports is difficult and time 

consuming. Sports often involve physical tasks that re- 

quire specific choreography in order to be most effective. For 

example, golf swings, tennis serves, basketball free throws, and 

martial arts kicks all involve a series of movements that must 

be properly timed and executed. Acquiring the physical skills 

necessary to perform such movements well requires three steps: 

1) task definition; 2) practice; and 3) performance assessment. 

The process is iterative and continues indefinitely, with feed- 

back from performance assessment at each step revising the task 

definition. 

Task definition can be determined by watching a video, 

reading a book, or listening to a coach. Assessing performance 

is challenging due to complexity of movements. Even if the 

learner fully understands what to do, it may be difficult to 

effectively compare performed actions to the intended action. 

Videotaping can be effective, but it does not provide fine grain 

detail of joint movement, and identifying performance mis- 

takes using video may require an expert. Even when coaches 

are available, they have many students and limited time, and 

diagnosing problems can be time consuming. An automated 

system that can assess the overall performance of a learner 

and pinpoint problem areas in the learner’s movements would 

facilitate performance assessment, increasing the effectiveness 

of unsupervised practice. 

Movement coordination refers to the relative timing of 

motions made by different body segments. Our study focuses 

on detecting coordination problems in a baseball swing. Tradi- 

tional studies on coordination analysis use kinematic variables 

of human motions to discover inter-joint time differences. 

Most techniques originate from a method by Grieve [1] who 

proposed the use of a plot of angular time series of two joints 

to visualize intersegment coordination. These plots, called 

angle-angle diagrams, can be used in coordination assessment 

[2]. Inter-joint coordination can be used in both biomedical and 

sports training applications. In gait analysis, kinematic-based 

approaches are used to measure coordination between rearfoot 

and forefoot during walking [3]. In sports training, changes in 

coordination during the practice, e.g., soccer kick [4], can be 

reported, and is used for skill development. A major problem 

with the current methodologies that quantify coordination is 

that they rely on video data to extract the dynamics of motion, 

or require expensive components to analyze physical models 

of movements. In contrast, we propose an effective model that 

uses machine learning and signal processing techniques to 

extract coordination information from inexpensive off-the-shelf 

motion sensors [5]. 

The idea behind our coordination analysis approach is to use 

clustering techniques to extract temporal behavior of the signal 

during a baseball swing. By enforcing constraints during clus- 

tering, we highlight key events important in baseball swings. 

The resulting clusters enable us to represent each signal in 

terms of a sequence of clustered data points in time. Using 

specific sequences of clusters, we identify the movement and 

extract timing information from certain transitions in the clus- 

tering, which correspond to the key events. Our swing analyzer 

is trained on inertial data recorded from a number of practice 

swings with properly coordinated movements. Coordination is 

assessed by an expert watching associated videos. The most 

representative swing from this practice set of swings is chosen 
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as a template. A new swing is then compared to the template, 

and the quality of movement is quantified based on the degree 

of variation. 

In this study, we make the following contributions: 

1) We present a mobile sports training system using body-worn 

motion sensors [5] to analyze body movements during a base- 

ball swing. 2) We introduce motion transcripts that are extracted 

from sensor readings and specify prominent movements of in- 

dividual body segments. 3) We develop a signal processing 

model to assess coordination between different body segments 

using motion transcripts. 

 

II. RELATED WORK 

Much effort has been expended on building sport apparatus 

and training systems that help people improve their sport skills. 

These devices can be broadly categorized into mechanical and 

electronic devices. Mechanical training systems (e.g., [6] and 

[7]) have been traditionally used to provide high-level feed- 

back on quality of movements. While these systems have simple 

structure and are easy to use, they lack fine grain details of 

movements a player can perform. Furthermore, most traditional 

sports training systems have constraints in terms of training lo- 

cation and degree of intelligence they offer. For instance, [8] 

uses a laser beam attached with the golf club which along with 

a convex mirror helps the player to track the path of a hitting 

ball. 

Use of sensor-based platform has proved effective in evalu- 

ating quality of movements. Majority of the research focuses 

on recording and analyzing the body movements of the person 

using different types of sensors such as cameras, RFIDs, and 

inertial sensors. Authors in [9] use a motion capture system to 

record and analyze dynamics of human motions when learning 

tennis strokes. They show that alternative forehand and back- 

hand movements outperform discrete forehand or backhand 

practices due to the inertia of the trunk rotation movements  

between subsequent strokes. Authors in [10] present an optical 

approach for the purpose of capturing high-speed motion of a 

hitting ball in baseball using multi-exposure images obtained 

by low-cost still cameras and a stroboscope. They derive al- 

gorithms to track the ball and analyze dynamics of the motion 

by measuring position, velocity, rotation, and spin of the ball. 

The work in [11] presents a system for accurate detection of    

a tennis ball using task-level learning from practice approach. 

The authors program a robot to juggle a tennis ball and use 

binary-vision to track the movements and measure the perfor- 

mance. The task-level learning improves the performance with 

every successive practice. A motion capture system is used    

in [12] to build a virtual baseball training system. The batter 

swings the bat toward a virtual ball rendered over a screen, 

and the trajectory of the swing is used to provide qualitative 

results. Another training system presented in [13] integrates 

accelerometers and video data to detect human action and 

provide visual feedback in real-time. Although vision-based 

training approaches provide sufficient resolution of human 

movements, they are relatively expensive and are constrained 

to lab conditions and cannot be used in the field. 
Lack of fine grain detail in traditional training systems and 

lack of mobility in video-based training warrant the need for use 

of wearable mobile platforms. Advancements in electronic and 

wireless technologies have enabled design of wearable sensory 

platforms that can be woven into our daily lives. Body-worn 

motion sensor systems are primarily used for healthcare moni- 

toring [14]–[16]. Accelerometers and gyroscopes are the most 

commonly used sensors to detect motor movements [17], [18] 

in wearable healthcare domain. These sensors can be placed on 

the human body or sport equipments and provide information on 

movements. Virtual training systems that use such platforms are 

portable. They accelerate training by providing students with in- 

formation regarding mistakes made during practice at anytime 

and in any location. In [19], authors present an on-body wireless 

sensor platform for real-time snowboard training. They deploy 

inertial sensor, bend sensors and force-sensitive resistors along 

with communication facilities in a wireless network to capture 

and analyze rider’s motion and posture on the snowboard. Au- 

thors in [20] develop signal processing algorithms to measure 

the angular rotations of wrist during golf swings. [21] describes 

how to use body-worn sensors, accelerometer and gyroscope 

in particular, to record the actions made by humans in martial 

arts. The acquired data are then used to find the quality of the 

moves and level of expertise the person has while making those 

moves. In [22], authors model the golf swing as a double pen- 

dulum system and use inertial sensors placed along the body and 

golf club to determine how closely the movements of the body 

follow predetermined motion rules. 
Several researchers have investigated coordination between 

joints and body segments with the use of kinematic variables 

of human motions. Most techniques are originated from the 

method presented in [1] that uses a plot of angular time series 

of two joints in order to visualize intersegment coordination. 

These plots, so-called angle-angle diagrams, have been used in 

coordination assessment [2]. An application of this technique 

in sports skill verification is given in [4] where changes in co- 

ordination are examined during the practice of a soccer kick. 

Quantification of movement coordination, however, has been a 

challenging problem. Several attempts have been made to quan- 

tify timing difference in movement patterns. Authors in [23] de- 

scribe a chain-encoding technique originally presented in [24]. 

The vector coding technique involves using a superimposed grid 

to transform the angle-angle trajectory into digital elements. 

Our work is different from aforementioned studies. We use 

body sensor networks to build a signal processing model for 

evaluation of baseball swings in terms of coordination between 

movements of different body joints. To the best of our knowl- 

edge, coordination analysis of baseball swings using wearable 

sensors has not been previously studied by other researchers. 

III. BASEBALL SWING MODEL 

Baseball batting involves hitting a thrown ball with the pri- 

mary objective of transferring maximum force to propel the ball 

as far as possible in a desired direction. Successful batting re- 

quires proper sequence and timing of movements by different 

body segments. Numerous baseball players and coaches have 

suggested methods for successful batting. The swing model pre- 

sented in this section is obtained based on studies in [25] and our 

extensive discussions with coaches and baseball players.1 
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A good swing is the result of a sequence of rotational move- 

ments including foot, knees, hips, shoulder, and hands move- 

ments. Generally, the action of the batter starts in the lower body 

and moves upwards. Properly performed motions executed at 

the right time maximize the power of the swing. Major compo- 

nents of a good swing include bat speed, bat swing plane and 

timing. The components aim to improve the chance that the bat 

connects with the ball, and increase the strength with which the 

bat hits. Common mistakes include late rotation of lower body, 

back shoulder dip, and drifting of the front foot. Late move- 

ment of the foot and hips impair the swing timing. Dropping the 

back shoulder affects the bat plane so as the bat does not pass 

through the strike zone horizontally, decreasing the chance of a 

successful hit. Drifting refers to improper weight transfer from 

the back foot to the front foot. One consequence is losing power 

in the hips, which decreases the bat speed at impact. Therefore, 

proper weight transfer necessitates coordination between dif- 

ferent body segments during the swing. 

Our model of baseball swing emphasizes three major events: 

1) rotation of the lower body (feet, knees, hips) toward the 

pitcher;  2)  rotation  of  the  upper  body  into  the  swing; and 

3) the swing of the arms and hands toward the pitcher. These 

key events should be executed in a specific and overlapping 

sequence. The coordination is extremely important as it ensures 

that the maximum power from arms, shoulders, and hips is 

delivered exactly as the bat crosses the plate [25]. Our measure 

of swing quality is based on this coordination. 

The coordination,     , between two body segments     and    

is defined as the time difference between corresponding key 

events and [26] 

 
  (1) 

 
The three key events in our swing model are the starting hip 

rotation, shoulder rotation, and arm extension. 

 
IV. SYSTEM OVERVIEW 

This section provides a brief overview of our swing vali- 

dation system including hardware infrastructure and statistical 

signal processing techniques. In Section V, we will elaborate 

on core processing components of our system. In particular, we 

will show how human movements can be transformed into a se- 

quence of primitives, and how transcripts can be generated to 

highlight specific key events of a baseball swing. 

 

A. Sensing Platform 

We use several wireless sensor nodes, collectively called a 

body sensor network (BSN), to monitor swing dynamics. The 

sensor nodes are commercially available TelosB motes from 

XBow®. We use a custom-designed sensor board [27] consist of 

a three-axis accelerometer and a two-axis gyroscope. The motes 

sample their sensors at 50 Hz and use a TDMA scheme to com- 

municate all data to an off-body base station. Three sensor nodes 

are placed on the subjects, as shown in Fig. 1. Sensor nodes are 

secured at the locations that capture movements of our specific 

key events in a baseball swing. The base station relays the infor- 

mation to a PC via USB. Two webcams are used to record video 

 

 
 

Fig. 1. Experimental subject with three sensor nodes placed on “hip,” ‘chest,” 
and “wrist” to capture “hip rotation,” “shoulder rotation,” and “arm extension.” 

 

Fig. 2. Using swing analyzer for coordination analysis. Cluster parameters are 
determined during training, and are used by individual sensor nodes for tran- 
script generation. Template is defined during training, and is used by a base 
station to analyze timing of different body movements. 

 

 
of all experimental trials, and MATLAB collects and synchro- 

nizes the sensor and video data. The video data are used during 

training for segmentation. We also use video data as a gold stan- 

dard to validate our signal processing techniques. 
 

B. Swing Analyzer 

Our system aims to evaluate a baseball swing in terms of 

coordination between body segments by processing raw sensor 

readings acquired from movements of hip, shoulder, and arm. 

A top-level block diagram of our  signal  processing  model 

for evaluation of a given movement is shown in Fig. 2. The 

processing takes the following steps. The data collected from 

motion sensors are filtered using a moving average filter to 

enhance the signal-to-noise ratio (SNR). Next, simple statis- 

tical features including mean, standard deviation, root mean 

square, and first and second derivatives are extracted from a 

small moving window centered about each point of the signal 

segment. The signal processing model shown in Fig. 2 is then 
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Fig. 3. Training for swing analyzer includes cluster creation, which is used for 
transcript generation, and creation of a template swing. 

 

 
used to provide feedback on coordination measure based on 

the definition in (1). Each sensor node independently extracts 

a sequence of symbols, known as a motion transcript, based  

on the features extracted from sampled data, and according   

to previously trained cluster parameters. Transcripts aim to 

highlight the key events using a semi-supervised clustering 

technique. Event times (e.g., start of hip rotation) are extracted 

from each transcript using simple string matching. These event 

times are sent from each node to a base station and compared 

to a reference template, which is the event times from a repre- 

sentative proper swing. Players are provided these deviations 

as feedback to determine swing quality. 

The coordination analysis in Fig. 2 requires several inputs in- 

cluding a template transcript (i.e., representative proper swing) 

and clustering parameters. A set of practice swings and event 

timings for those swings are required to train the model. An 

expert uses timing criteria to select good swings from a set of 

practice swings, and then to specify key event times for those 

swings. This data are used to train the model, as shown in Fig. 3. 

The cluster creation and template selection steps are explained 

in Section V. 

 
V. MOTION TRANSCRIPTS 

The movements of interest in our system can be performed 

well, poorly, or not at all. For example, problems with hip ro- 

tation could include: 1) not rotating the hips at all; 2) allowing 

the swing to pull the hips instead of making the hips push the 

swing; or 3) starting to rotate the hips too late. We aim to build 

transcripts of movements that can be used to identify and grade 

the movements of interest as well as analyze the coordination 

between joints to provide further feedback. We call this body 

choreography modeling. 

The idea of motion transcripts is motivated by the hierarchical 

representation of human speech. Like words in spoken language 

that are divided into phonemes, human movements can be rep- 

resented by coordinated sequences of simple motions and pos- 

tures, referred to as primitives. Each body segment has its own 

sequence of motions that is coordinated with and affected by the 

motions on other limbs. For instance, in a baseball swing, the 

wrist initially is held motionless next to the head, then swings 

down, and finally is pulled across the body. Further, rotation of 

the hip will affect the speed and timing of the hand movement. 

Motion transcripts can significantly reduce complexity of raw 

data and provide a simple and compact representation of human 

movements [28], [29]. 

A transcript of motion is a record in time of simple move- 

ments performed by several joints. A simple movement, which 

we call a primitive, is a segment of motion with persistent phys- 

ical behavior. The transcript describes the order and timing of 

movement primitives that creates overall complex movement. 

For example, a transcript for the foot during walking consists 

of: 1) lifting the foot; 2) moving the foot forward; 3) placing 

the foot on the ground; and 4) bearing weight on the foot,  

with certain periods of time associated with each primitive. 

The pattern repeats as long as walking continues. At the same 

time, a transcript for the hip consists of: 1) rotate clockwise and 

2) rotate counterclockwise, repeatedly. The primitive sequences 

for different joints in the body may not be independent. For 

example, in walking, the hip should rotate clockwise when  

the left foot moves forward and rotate counterclockwise when 

the right foot moves forward. When the coordination between 

joints is incorrect, the movement may be performed poorly,   

or a different movement may be performed. Transcripts of 

consistent movements should be consistent, and transcripts of 

inconsistent movements should highlight the differences be- 

tween them. Achieving this requires finding the proper number 

of relevant movement primitives to use when describing com- 

plex movements. If no prior knowledge exists about changes in 

physical behavior of a particular movement, then transcript of 

that movement can be generated in an unsupervised manner as 

follows. At every point in time, the movement has certain char- 

acteristics. We can assume that adjacent points belong to the 

same movement primitive if they have similar characteristics. 

We can determine the characteristics for each data point in the 

signal by extracting statistical features such as mean, standard 

deviation, root mean square, and first and second derivatives 

from a moving window centered about the current point. In the 

next step, individual data points can be clustered based on these 

features. The centroid of each cluster then defines a movement 

primitive. In our baseball training system, however, some of 

the events such as “hip rotation,” “shoulder rotation,” and “arm 

extension” can be identified from video during training. This 

information can help the clustering algorithm highlight specific 

parts of the signal, and therefore, can be used to measure timing 

of the events during testing. 

A. Transcript Generation 

Using motion transcripts, we divide sensor readings into over- 

lapping frames. During training, an expert can use videos of the 

movements to label certain frames as events of interest (e.g., 

hip rotation). Other frames may remain unknown or are not of 

interest to designer; however, they may represent particular mo- 

tions of individual limbs. Therefore, the process of transcript 

generation should be semi-supervised. Our system uses a semi- 

supervised clustering [30] based on the well-known -means 

clustering to generate transcripts. While information about cer- 

tain motions (e.g., hip rotation) is provided during training, a 

swing includes unspecified movements of body segments. Im- 

portant information about the key motions at any given time may 

be contained in a short interval of sensor readings centered on 

the time of interest. These short, overlapping intervals (frames) 
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Fig. 4. Raw sensor readings and corresponding transcript generated from a 
node placed on the “wrist” during a baseball swing. Only gyroscope readings 
are shown in this figure; however, both accelerometer and gyroscope sensors 
were used to generate the transcript. 

 

 
are individually assigned symbols. Furthermore, the unknown 

events are automatically detected by grouping frames together 

based on a similarity measure and assigning unique labels to 

each grouping. 

The exact time of certain key events is known (i.e., ), so 

the frames for a short period of time before the event are la- 

beled   and those right after the event are labeled    . The  

labels (with ) for the rest of the frames 

are unknown; therefore clustering is used to assign these labels. 

The time of a key event can be extracted from a transcript by lo- 

cating the transition from to . An example of a transcript 

generated from sensor node placed on the “wrist” is shown in 

Fig. 4. In this figure, the two top graphs illustrate angular ve- 

locity about and axes. The graph at the bottom shows a 

transcript generated using -means clustering. From the node 

placed on the “wrist,” we intend to highlight the time of “arm ex- 

tension.” From our training data, we detect the value of the time 

(relative to the start of the swing) when a player starts extending 

his/her arms. This information is used to enforce the clustering 

algorithm to group sample points prior to and after occurrence 

of the “arm extension” to separate clusters. In Fig. 4, a transition 

from to illustrates the “arm extension” event. 

B. Clustering Algorithm 

Statistical classification uses training data to create a model 

which can be used to assign labels to the frames in new data. If 

the labels are known for the training data, then a classifier can be 

built which tries to assign one of the known labels to a new frame 

based on how closely it matches the data for the training frames. 

If the frame labels for the training data are unknown, methods 

known as clustering can group frames together based on sim- 

ilarity and assign unique labels to each grouping. Our system 

uses a hybrid approach called semi-supervised clustering [30]. 

The -means technique is used to define our primitives because 

it is algorithmically simple and efficient to use after training 

[31], [32]. Two important parameters when training the model 

are the number of clusters, , and cluster centers. Proper choice 

of is important because too few clusters will cause the tran- 

script to miss key details and too many clusters will produce 

irrelevant and misleading clusters. A number of different values 

of , varying between 2 and 9, are tried, and the resulting models 

are evaluated using the Silhouette measure [33]. The silhouette 

index is given by 

 

(2) 

 
where    is the number of data points in the training set,    is  

the average distance between the th data item and all the items 

inside same cluster, and   is the minimum of the average dis- 

tances between the th item and all the items in other clusters 

than th data point. The clustering model with the highest sil- 

houette index is chosen. 

The second major parameter is the initial clustering. A 

common technique in the literature for choosing the proper 

cluster centers is to train the model with different initial cen- 

troids and calculate the sum of square error (SSE) for each. The 

SSE is given by 

 
                        (3) 

 
where  denotes the   th data item,   denotes the centroid   

vector associated with   th cluster, and    is the total number   

of clusters. In each phase of the algorithm, we randomly assign 

distributed data points as initial centroids. The configuration that 

has minimum SSE value is chosen for clustering. 

C. Template Selection 

The goal of template selection is to pick a representative 

swing from the trials with proper sequence and timing of the 

key events. Coordination of a new swing will be measured 

against this template, and the degree of deviation is reported 

as the quality of the performed movement. The template, , is 

selected from the set of “coordinated” training swings, . The 

trial with the lowest summed deviation in coordination between 

itself and the other trials is selected, as shown in (4) 

(4) 

 

 
D. Template Matching 

The process of comparing a test trial against the template  

to detect start time of a key event is not trivial. An event 

which is represented by transition from one symbol to another 

( ) might be repeated several times in a transcript. 

Therefore, it is required that a template matching function finds 

the right timing information about the event. Let be the tem- 

plate generated for sensor nodes with the key event  . For a 

test trial    , template matching finds the instance ofthat has 

the minimum time difference among all existing    pat- 

terns. The resulting event is given by 

                                      (5) 

VI. SYSTEM PROTOTYPE 

In this section, we illustrate how our swing analyzer can mea- 

sure quality of baseball swings and provide quantitative feed- 
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Fig. 5. Transcripts of sample swings with good and bad ordering of key events. (a) A swing with proper sequence and timing of motions. (b) A bad swing with 
improper ordering of key events. 

 

 
back on intersegment coordination. We specifically describe dif- 

ferent steps for data collection, signal processing and transcript 

generation, and swing validation. 

 

A. Data Collection 

We conducted a set of experiments to determine coordination 

between the key events of hip rotation, shoulder rotation, and 

arm extension. For this purpose, three male subjects were asked 

to wear our body sensor network as shown in Fig. 1. The sub- 

jects had no previous swing training, and aged between 25 and 

35. They were asked to execute 20 baseball swings each with 

varying timing and sequences of the key events. The data were 

collected on a Laptop through a base station, as described in 

Section IV-A. Video of all trials was captured for training our 

swing analyzer in subsequent steps. 
 

B. Preprocessing 

The raw sensor readings were passed through a five-point 

moving average filter to reduce the effect of high frequency 

noise. To capture parts of the signal that correspond to a com- 

plete baseball swing, we used the video data which was recorded 

during data collection. Using video, we found the start and the 

end of each swing and ignored the rest of the signal in subse- 

quent processing. The video data was further used to manually 

identify timing of the key events to train the system and validate 

its performance. We used 50% of the trials with proper ordering 

of the events (22 trials out of a total 44 good swing trials) to train 

our system. The rest of the trials (other 22 proper trials as well 

as 16 improper trials) were used for validation. 

 

C. Transcripts 

The next step in our signal processing flow was feature extrac- 

tion. The five statistical features described in Section IV-B were 

extracted from a moving window centered about each sample. 

These features were calculated for all training trials. The fea- 

tures were then used for -means clustering which aimed to con- 

struct primitives of the movements. These features are compu- 

tationally inexpensive that can be executed on our lightweight 

sensor nodes and their effectiveness in capturing structural pat- 

terns of motion data and detecting the key events is established 

through our experiments. 

Transcripts of all swings were prepared using our previously 

described technique. Fig. 5 shows transcripts of sample swings 

 
Fig. 6. Coordination of good and bad swing trials. 

 

 
in terms of sequence and timing of the events. Each unique 

motion primitive is assigned a different color for visualization. 

Each key event is identified by two symbols, illustrating a tran- 

sition from one primitive to another. “Hip rotation” is detected 

when the pattern “AB” is observed on the transcript. Similarly, 

“shoulder rotation” and “arm extension” are detected by “XY” 

and “MN,” respectively. 

 

D. Coordination 

After training the coordination analysis system using the pro- 

cedure shown in Fig. 3, the intersegment coordination was cal- 

culated using (1). By comparing this value with the one obtained 

for the template, we provide feedback to the user in terms of 

the amount of deviation from the “perfect” swing. The template 

matching can be done for every pair of key events. Fig. 6 shows 

the average amount of deviation in coordination from the tem- 

plate for the first 16 test trials for both groups of proper and 

improper swings. The values were averaged over all three pairs 

of events (hip versus shoulder, hip versus arm, shoulder versus 

arm). As it can be observed from the figure, improper swings 

have been identified as to have significantly larger deviation 

from the template. Overall, good swings had an average dis- 

tance of 109 msec from the template while this number was 295 

msec for improper swings. 
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Fig. 7. Comparing transcript-based coordination measurements with coordina- 
tion extracted from video, for “hip-shoulder” and “hip-arm” coordination. 

 

Fig. 8. Comparing transcript-based coordination measurements with coordina- 
tion extracted from video, for “shoulder-hip” and “shoulder-arm” coordination. 

 

Fig. 9. Comparing transcript-based coordination measurements with coordina- 
tion extracted from video, for “arm-shoulder” and “arm-hip” coordination. 

 

 
In order to measure accuracy of our coordination evaluation 

system, we further compare coordination values calculated from 

transcripts with those measured from video. Figs. 7–9 show this 

evaluation for the set of 38 test trials for different pairs of body 

joints. These plots visualize the error of transcript-based coor- 

dination assessment. Fig. 7 illustrates the plot of coordination 

measured from transcripts versus that of videos for the node 

placed on the hip. Figs. 8 and 9 compare transcript-based and 

TABLE I 
MEAN AND STD. OF COORDINATION MEASUREMENTS (MSEC) 

 

 
TABLE II 

MAE FOR COORDINATION BETWEEN EVENT PAIRS (MSEC) 
 

 
video-based coordination measurements for the shoulder and 

arm nodes respectively. Given the video-based analysis as the 

ground truth, the points closer to the dashed line exhibit less 

error with respect to motion transcripts. Table I shows mean and 

standard deviation of measurements made by our transcripts as 

well as those calculated from video-based analysis. 

The accuracy of our coordination analysis based on motion 

transcripts is demonstrated by measuring the mean absolute 

error (MAE) between our technique and the coordination anal- 

ysis based on video. Table II shows the absolute error for both 

groups of improperly coordinated test movements and proper 

swings. The overall error over all categories was 101 msec 

which is 3.4% of the total length of the template (3 sec.). 

Algorithm Complexity 

The five statistical features described in Section IV-B are cal- 

culated from each sampled data. As a result, the feature extrac- 

tion linearly grows with the number of samples within each ac- 

tion and the number of features, turning the feature extraction 

into a linear function in the number of features and length of 

actions. 

Once -means clustering is used to create and define clusters, 

it can be used to assign an unknown observation to one of the 

clusters. Transcript generation for a given test trial consists of 

finding proper label for each data point based on distance be- 

tween every sample point and previously defined cluster cen- 

troids. For a given baseball swing, this process is linear in the 

length of the trial and the number of clusters. In our system, the 

length of swings and number of created clusters were 3 sec and 

5 clusters on average. 

 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we introduced a novel idea on how to train a 

player in baseball by using portable sensor networks which also 

would prove to be more economical than a coach. To achieve 

this we plan prepared the system for generating transcripts of 

various human movements using body sensor networks, and de- 

veloped a technique for measuring coordination between body 

segments. We used a semi-supervised clustering technique to 

construct basic patterns of movements. The motions include 

motions specified in the training data as well as motions found 

automatically. We further demonstrated the effectiveness of mo- 

tion transcripts for analysis of baseball swings using inertial data 

collected from several subjects. 
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As part of our ongoing research, we are developing our ex- 

isting techniques for real-time signal processing on the motes. 

We are also working with a baseball coach to develop criteria 

for detecting other common mistakes, and to determine the most 

useful types of feedback for players and coaches. The model of 

transcripts was chosen because it can label motions that are not 

directly specified. For instance, an athlete might have a motion 

that hurts the swing, but is difficult to see in the video. This might 

be shown in the transcripts, and allow the motion to be diagnosed. 

As an example, in our data, the transcripts clearly label the hitting 

zone even though it was not specified as a key event. We intend 

to more formally investigate these properties in the future. 
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