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T 

Abstract—Total Variation (TV) is a powerful method that brings great utility to edge-preserving regularization. Although widely 
used in image processing, its applicability to one-dimensional signal processing is limited because piecewise-constant signals form a 
rather restricted model in many applications. Here we generalize classical TV to one dimension by extending the differential operator 
found in the regularization term to any linear differential operator. This allows for the presence of significant linear systems and the 
flexibility to adapt the approach to different types of drive signals. Examples: lacy, piecewise constants, etc. Conventional television 
remains a special case of these framework conditions. We show the feasibility of this method by considering a linear system of interest 
and different types of driving signals. 

Index Terms—Differential operators, linear systems, regulariza- tion, sparsity, total variation. 

 

I. INTRODUCTION 

IKHONOV regularization is one traditional way in en- gineering and statistics to deal with ill-posed problems; 

i.e., the solution should provide a balance between the data term (consistency with the measurements) and the regulariza- tion 

term (based on prior information). Generalizations of this scheme employ the energy of the solution’s image under a linear operator 

instead of the energy of the solution [1]. Such regular- ization strategies typically lead to smooth solutions when em- ploying   -

norm. Alternatively,   -norm regularizations have attracted a lot of attention for their sparsity-promoting property; i.e., they favor 

sparse representations with many zeros or very small coefficients. The  -norm is the relaxed convex counter- part of the ideal 

sparsity-promoting, but nonconvex,      spar- sity count (the number of nonzero components) [2]. A particular 

Identifier case of -norm based regularization, total variation (TV), has been widely applied in image processing [3], 

including applica- tions like image denoising, restoration and deconvolution [4], [5]. In 2-D, TV is defined as the -

norm of the magnitude of the gradient. In this respect, TV regularization preserves edge information and hence offers 

superior approximation quality for most real-world data compared with (smooth)  -based regular- ization. In a typical 

denoising problem, the aim is to recover an object , given its noisy measurements . If the object is known to be sparse 

in a given representation, this information can be used to come up with a regularization strategy. In this regard, 

promoting “sparsity” of the analysis or synthesis coeffi- cients leads to two different regularization strategies [6]. More 

precisely, if denotes the synthesis operator of a frame, “syn- thesis prior” denoising requires the solution to satisfy 

  (1) 
 

where for  -constrained fitting regression (see, for ex- ample, [7]–[11]). On the other hand, the “analysis prior” formu- 

lation looks for the solution of 

(2) 
 

where denotes the analysis operator of the frame. For or- thonormal bases, the two approaches yield the same result; for 

redundant frames, even tight ones, they do not. In this setting, Tikhonov and TV regularized formulations of the denoising 

problem can be regarded as generalizations (since the associ- ated operators are not necessarily the analysis operators of a frame 

anymore) of the analysis prior formulation, which rely on the  and the -norm, respectively. 

TV exploits the combination of a derivative operator with the  -norm, which makes this regularization an ideal option when 

dealing with piecewise-constant signals. However, in many 1-D applications much more complex signals are encountered. 

Piecewise-polynomial signals can be dealt with by TV with built-in higher order derivatives [12]–[16]. For example, TV with 

the second-order derivative is optimal for piecewise-linear signals. The benefit of adding higher order derivatives is that they 

reduce the staircase effect of the first order derivative in TV and bring flexibility to the reproduced signal. This exten- sion has 

been used to retain smooth transitions while keeping sharp edges [16], for texture extraction [17], and has recently been 

reintroduced for MRI reconstruction [18]. The early appli- cation of TV regularization has been hampered by rather high 

computational complexity, but the recent advances in the field have led to fast algorithms for the      minimization problem. 

Today, the algorithms at hand range from dual methods [19], it- erative reweighted norm (IRN) [20], fixed point algorithm [21], 

graph cuts [4] to (fast) iterative shrinkage-thresholding algo- rithm ((F)ISTA), and so on [5], [22], [23]. It is important to 

note that basis-pursuit denoising [7] can offer a “synthesis” 

counterpart of TV; i.e., inverting the derivative operator leads 

to a dictionary with (shifted) Heaviside step-functions. There- 

fore, analysis-prior and synthesis-prior methods seem to be 

equivalent from a theoretical point-of-view, but the represen- 

tation by the Heaviside dictionary is unstable. For example, in 

[24], the analysis counterpart of the constructed dictionary is 

preferred for its simplicity. In some cases, a specific dictionary 

can be built for the synthesis operator [25], [26], including 

generalizations of wavelet design [27], [28]. 

Here, we extend the conventional TV concept and adapt the 

regularization for any linear differential operator . The choice 

of the operator can be tuned to the presence of a linear system 

and can be adapted to the type of the driving signal that is ex- 

pected. We propose generalized TV regularization for the typ- 

ical setting in signal processing dealing with uniformly sampled 

data. We also provide two practical algorithms to solve the op- 

timization problem at hand. 

The paper is organized as follows. We elaborate conventional 

TV as a mathematical principle and then introduce our gener- 

alized TV scheme in Section II. Section III is devoted to the 

algorithms and how to modify these general-purpose solvers 

for generalized TV regularization. In Section IV  we simulate a 

system of third-order linear differentials and compare the per- 

formance of proposed generalized TV and conventional TV. 

Finally, we comment on the numerical results and draw some 

conclusions. 
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II. GENERALIZED TOTAL VARIATION 

A. Beyond Conventional TV 

We introduce a new regularization term that is inspired from 

the combination of TV with linear differential operators. We 

first revisit conventional TV, which forms the fundamental 

mathematical concept behind our methodology. 

Definition 1 (Total Variation): TV of a continuous-do-  

main   function      on  interval , is defined as the 

supremum   of  absolute   differences  for  any   finite partition 

: 

 
(3) 

 
If the first derivative of   is well defined, then TV can be 

shown to be equivalent to 

 
(4) 

 

where is regular (continuous-domain) derivative [4]. 

For many applications in signal processing, the data is ac- 

quired and available on a uniform grid. Specifically, we consider 

the series of samples          . In such a case, TV can 

be computed as the -norm of the finite-difference operator 
 

where . This point of view clearly 

reveals the link between the formulations (3) and (4); i.e., the 

finite difference is the discrete counterpart of the continuous- 

domain derivative . In fact, in the case of uniform discrete  

data as will be considered further on, the concept of TV can 

seamlessly be extended for discrete filters that are associated to 

general linear differential operators. 

Definition 2 (Generalized Total Variation): For a discrete 

signal , we define the generalized TV as 

(5) 

 
where  1 is the discrete version of the th-order differential 

operator 

              (6) 

with     is  the identity operator, , , and 

, , the zeros and poles of the operator, 

respectively, and  . We conveniently characterize the 

operator by   and . This 

operator can also be used to build exponential B-splines [29], 

[30] and wavelets [27]. 

Clearly, the definition in (5) includes conventional TV; i.e., 

the case with  and   reverts to that case. It 

should also be noted that for   the discrete operator  
has finite length  . For  , the support of the discrete 

operator  becomes infinite in general and the operator can be 

constructed by a proper combination of causal and anti-causal 

filtering depending on the poles of the system. The following 

proposition summarizes how to obtain the discrete counterpart 

  of . The proof can be found in the Appendix. 

Proposition 1 (Discrete Implementation of ): Consider the 

continuous-domain  linear differential operator , 

where  and  constitute the operators of ; the operator 

is inverted as before. Therefore, 
 

 

 

We  separate in  its  causal  ( , characterized by 

, )  and  anti-causal ( , 
, ) parts to assure stability. Then, 

the discrete operator associated to can be obtained by a 

cascade of filtering operations corresponding to 
 

(7) 

 

where is the input,  is the output of the first recursive fil-  

tering  step  (causal),  is  the  output  of  the  second  recursive 
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with 

 

 

Fig. 1. Illustration showing the observation model and the use of generalized TV. First, the driving signal serves as input to the linear system. Next, the (ideal) 
system response gets corrupted by noise. Generalized TV regularization aims at minimizing the  -norm of the differential operator—which is tuned to the linear 
system and driving signal—applied to the reconstruction. 

 

filtering step (anti-causal) and is the final output. The con- 

stituting filters are given in the time domain by 
 

 

where  we use the multi-index notation , 

and the conventions 

and  . The initial condi- 

tions for the recursive implementations (the last two rows of 

(7)) can be determined with respect to the input    ; i.e.,  and

 are nonzero within the support of . 

B. TV Regularization 

As usual for TV regularization, we cast our problem of 

finding the approximation from the noisy measurements 

into a variation formulation where we use the generalized TV 

regularizer from (5). Then, the minimization problem becomes 

(8) 

 
 

where     is the regularization tuning parameter and      is the 

discretized form of a differential operator of the form (6). The 

solution depends on , which controls the trade off between the 

data and regularization terms. 

The optimal solution to (8) should find a compromise be- 
tween data fidelity and regularization cost. In the continuous 

domain, any homogeneous solution of the differential op- 
erator      has no cost since . This property also 

holds for the sampled version     and the discrete filter ; i.e., 

         . Therefore, null-space components of the differ- 
ential operator can be used at no cost to minimize the residual 

error. Moreover, signals with a sparse representation after ap- 

plying  have a low cost for the  -norm and will be preferred. 

For the case , we retrieve the conventional TV regular- 

ization where the constant signal is the (only) null-space com- 

ponent and the lowest global cost is attained for piecewise-con- 

stant signals. 

C. On the Choice of Differential Operator 

The main working principle of TV is to impose sparsity 

through the  -norm of the derivative of the signal, which is 

typically satisfied for piecewise-constant signals when com- 

bined with the data term. The additional flexibility that we 

propose by generalizing for any differential operator allows 

incorporating additional or different prior information. 

When dealing with a linear system in Fig. 1, the differential 

operator can be tuned to the inverse of the system response. In 

this case, the differential operator will undo the effect of the 

linear system, and regularization will be guided by the driving 

signal. The  -norm leads to the optimal performance when the 

signal is spike-like. More complex driving signals can be dealt 

with by further refining the operator; e.g., for a step-like driving 

signal a regular derivative can be added to the regularizing op- 

erator. We will discuss this point in more detail in Section IV. 

 
III. OPTIMIZATION ALGORITHMS 

In what follows, we briefly review two practical algorithms 

to obtain the minimizer of the cost functional   in (8). For 

now, we assume that all vectors and matrices involved are fi- 

nite-dimensional. This minimization problem can be regarded 

as a generalized form of the analysis-prior denoising problem 

(see [6] and [26] and the references therein). The first algorithm 

is essentially an adaptation of the one provided by Chambolle 

for TV denoising [5], [31] (also see [19] for a slightly different 

algorithm). In [5], the (fast) gradient projection ((F)GP) algo- 

rithm is derived for TV denoising problems whereas 

we adapted the algorithm for the discrete operator . 
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. 

. 

 

Algorithm 1: Let us consider the regularization operator  ; 

its   -transform is given by                          and 

reverts to the discrete time Fourier transform of . Fur- 

ther more, we choose subject to 
 

 

The algorithm then iterates the following steps until conver- 

gence: 

 

I) Update , 

where the adjoint of is . 

II) Update where denotes the 

element-wise clipping function, 
 

 

After convergence, set . 

With a small variation only, the fast version of the algorithm 

can be obtained [5]. 

Algorithm 2: Repeat the following steps until the conver- 

gence criterion is met for each  iteration with       : 
 

I) Update . 

II) Update 

III) Update 

IV) Update 

 

After convergence, set . 
These algorithms make use of the dual-problem [19] and em- 

ploys the “fast gradient-projection” (FGP) method [5]. Equiv- 

alent algorithms can be derived employing the “majorization- 

minimization” scheme (see [32]–[34]). Again initiating from 

the dual form, Chambolle [19] proposes a slightly different gra- 

dient-based model; finally, similar algorithms [23], [31] suggest 

“graph-cut” technique to solve the same problem. We refer to 

[35] for an extensive overview of recent algorithms. 

It is important to note that generalized TV can be combined 

with the more general deconvolution problem: the data term 

may include a matrix/operator ; e.g., that corresponds to a 

blurring filter. Then the optimization problem turns into 
 

 

  
 

The solution of this problem is not very practical to achieve 

directly with Algorithms 1 and 2 since the inverse of  may 

be ill-conditioned. The trick is to apply a two step optimiza- 

tion. The first (outer) loop tackles the deblurring problem while 

the second (inner) loop solves the denoising problem as pro- 

posed here. For more details, we refer to [5 Sec. 5] for com- 

bining (F)ISTA/FGP algorithms, and to [36] for the “majoriza- 

tion—minimization” algorithm. 

IV. EXPERIMENTAL RESULTS 

In this section, we present several examples to illustrate the 

usefulness and performance of the proposed method. First, we 

demonstrate signal reconstruction of a simulated linear system 

response with different driving signals and show how it outper- 

forms conventional TV. Finally, we show waveform analysis of 

audio signals by tuning the zeros of the operator to the central 

tone. 

TABLE I 
THE DIFFERENTIAL OPERATOR FOR GENERALIZED TV NEEDS TO BE 

CHOSEN ACCORDING TO THE LINEAR SYSTEM AND THE TYPE OF DRIVING 

SIGNAL. IS THE IDENTITY OPERATOR. THE INVERSE IS DEFINED AS 

EXPLAINED IN SECTION IV-A 
 

 

 

A. Proof of Concept 

We present synthetic examples according to the model shown 

in Fig. 1 to demonstrate the usefulness of generalized TV regu- 

larization. To focus the attention, we consider a linear system 

                                      (9) 

where and are the input and output signals, respectively, and 

denotes the convolution operator. We introduce the continuous 

Fourier transform of  as . 

We  can define a pseudoinverse , where   is 

defined by 

if 

if . 

Then,  matching  the regularization operator with    will 

cancel the effect of the linear system: 
 

 

where is a null-space component of the system , in other 

words,  . Notice that a null-space component of 

cannot be recovered. 

Depending on the assumptions on the driving signal , we 

have the additional freedom to include derivative operators in 

in order to further sparsify the signal and make the -norm 

effective. Specifically, in Table I, we give an overview of how 

the operator should be chosen for various types of driving 

signals; e.g., spikes, piecewise-constant, and piecewise-linear. 

We now illustrate these concepts by considering a third-order 

system driven by a spike-like signal. In this case, the Fourier 

domain of the impulse response of the system has the form 
 

 
 

with three poles and one zero. Consequently, the differential 

operator  can be characterized in its turn in the Fourier domain 

as the inverse of : 
 

 
 

where the system’s poles take the role of the operator’s zeros 

(and vice versa). The time-domain operator then corresponds to 
 

For a practical example, we take               
and . 
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Fig. 2. Generalized TV and conventional TV for a third-order linear system (with three poles and one zero) driven by spike-like signal (first two rows) and 
piecewise-constant signal (last two rows). (a) Original signal (inset: driving signal); (b) noisy signal; (c) reconstruction using generalized TV regularization; 
(d) reconstruction using conventional TV regularization; (e) original signal (inset: driving signal); (f) noisy signal; (g) reconstruction using generalized TV regu- 
larization; (h) reconstruction using conventional TV regularization. 

 

Since we assume the driving signal to be spike-like, we 

select , for which  the  discrete version of the 

forward  operator corresponds  to  an FIR  filter with four taps: 

and the discrete version of the inverse op- 
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TABLE II 
OVERVIEW OF THE PERFORMANCE MEASURED AS SNR (dB). THE OPTIMAL TUNING PARAMETER WAS DETERMINED USING AN ORACLE. AVERAGE SNR AND 

ITS STANDARD DEVIATION ARE REPORTED FOR 100 REALIZATIONS OF THE NOISE 

 

 

erator corresponds to a causal IIR filtering with                          . 

In Fig. 2(a), we show the noiseless original signal, the spike-like 
driving signal in the inset. We also added a random null-space 

component of the operator  (i.e.,        ) 

as a “background” to which the regularization term is insensi- 

tive. Next, the signal is corrupted by i.i.d. Gaussian noise 15 

dB [see Fig. 2(b)] and approximated using two regularization 

methods: generalized TV and conventional TV as shown in 

Fig. 2(c) and (d), respectively. For each method the oracle se- 

lected the optimal regularization parameter since it has access 

to  thegroundtruth.  Wealsocomputethefilteredversion   ofthe 

regularized solution in order to explore how well we reconstruct 

the underlying driving signal, see the insets in Fig. 2(c) and (d). 

The choice of the regularization parameter is important since 

the oracle is not available in practice. Different strategies can 

be adapted for selecting (see [37] for classical references to 

methods such as generalized cross-validation and the L-curve, or 

[38] for a recent Monte Carlo adaptation of Stein’s unbiased risk 

estimate that works well for TV, and [19], [39]–[42]). 

As an additional experiment, we change the driving signal 

into piecewise-constant, as shown in Fig. 2. Accordingly, we 

adapt the regularizing operator into , which only leads 

to an alteration of the FIR filter, 

                    . The results for the generalized TV and 

conventional TV are shown in Fig. 2(g) and (h), respectively. 

The regularization in (8) is performed using the algorithm de- 

scribed in Section III. We deploy three different noise settings: 

additive Gaussian noise corresponding to SNR level of 5, 10, 

and 20 dB. We report average SNR levels with standard devia- 

tion (over 100 realizations), with the optimal regularization pa- 

rameter and maximum SNR, in Table II. We compare the recon- 

struction quality obtained by oracle-Wiener filtering (optimal 

for a Gaussian-process driving signal corrupted with additive 

Gaussian noise), conventional TV, and generalized TV. As ex- 

pected, the results reveal that generalized TV is superior to con- 

ventional TV and the Wiener filter when tuning the operator 

different from is appropriate. Moreover, as it can be appreci- 

ated from the corresponding Figures, also the reconstruction of 

the underlying driving signal has high quality and can be useful 

for further processing in applications. 

An important concern is the robustness of the choice of the 

regularization operator with respect to the underlying “true” 

linear system. To that aim, we generate signals for a spike-like 

input of a third-order linear system  
with  in the range [  2, 2]. We  create 10 different realiza-   

tions corrupted by additive Gaussian noise resulting into 10 dB 

SNR. Next, we apply several regularization strategies: 1) gen- 

eralized TV with tuned exactly to the system; 2) generalized 

 

 

Fig. 3. Performance measured as SNR (dB) for generalized TV and conven- 
tional TV regularization of a third-order linear system with equivalent differ- 
ential operator                     , with , for varying 
values. The reported SNR measures are averaged over 10 realizations of addi- 
tive Gaussian noise (noisy signal 10 dB). 

 

TV with ; 3) generalized TV with  to illustrate 

second-order TV; and 4) conventional TV. We kept  con- 

stant to eliminate pole-zero cancellation. In Fig. 3, we plot the 

average SNR (10 regularizations) for different values of the 

linear system. As expected, we observe that second-order TV 

and matched generalized TV have equal performance at  . 

Similarly, generalized TV with fixed meets matched 

generalized TV at . Moreover, we notice that SNR 

levels for matched generalized TV tend to increase further for 

larger values of . The Green’s function of the differential op- 

erator  increases which generates high correlation between the 

samples. Conventional TV underperforms as the derivative op- 

erator is not well tuned to the linear system. 

B. Sound Waveform Processing 

We show that it is possible to tune the operator of general- 

ized TV to include information about modulation, which can 

be useful for audio signals; e.g., processing tonal and transients 

layers [43]. 

Specifically, let us assume the simplified signal model as a 

sum of shifted decaying exponentials, each one modulated by a 

high-frequency sinusoidal function: 

        (10) 

where is the decay rate. (10) can be  considered  as  the 

sum of responses of linear systems  with impulse responses 

for spikes  , respectively. Here we 
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Fig. 4. Zoom of the denoised audio signal, Für Elise (first two rows) and Glockenspiel signal (last two rows) corrupted with i.i.d.\ Gaussian noise 15 dB with 
generalized TV and conventional TV. We  employ differential operator and  

 for Für Elise and Glockenspiel signal, respectively, where      is the average frequency and  . (a) Original signal; (b) noisy signal; 
(c) reconstruction using generalized TV regularization; (d) reconstruction using conventional TV regularization; (e) original glockenspiel signal; (f) noisy signal; 
(g) reconstruction using generalized TV regularization; and (h) reconstruction using conventional TV regularization. 

 

pick one (central) frequency , for which the corresponding 

transfer function is 

 
(11) 

and the associated second-order differential operator becomes 

. 
We generated a synthetic signal [Fig. 4(a)] according to (10) 

with the first 9 notes of Für Elise whose frequencies range from 

329–1318 Hz and at sampling frequency      44 100 Hz. The 



Juni Khyat                                                                                                                 ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                                             Vol-12 Issue-07 No.03 July 2022 

Page | 263                                                                                                    Copyright @ 2022 Author 

. 

 

decay rate was We used the average frequency concurs with a synthesis prior. Despite the fact that our ap- 

of the notes and . The effect of tuning is neg- 

ligible on the output since the decay is very slow compared   

to the sampling frequency. We created a noisy realization of 

the audio signal by corrupting it with i.i.d. Gaussian noise at 

SNR 15 dB, see Fig. 4(b). We  show the output of general- 

ized (25.3 dB) and conventional TV (18.3 dB) in 4(c) and (d), 

respectively. The regularization parameter was chosen using 

an oracle. 

In the supplementary material, we have provided audio files 

of the example given above; i.e., original, noisy, denoised using 

conventional and generalized TV, and the spike driving signal 

can be listened. We also include another example using the 

real-world test signal “Glockenspiel” [43], where we increase 

the multiplicity of the zeros to make the frequency response of 

increasingly flat around , and thus cancel also tones with 

nearby frequencies.2 Finally, in Fig. 4(e), we show the “Glock- 

enspiel” signal, which is directly adopted from [43]. We de- 

graded the signal with additive i.i.d. Gaussian noise at SNR  

15 dB; see Fig. 4(f). The output for generalized TV (18.3 dB) 

and conventional TV (16.67 dB) is shown in 4(g) and (h), re- 

spectively. Note that the SNR values are computed against the 

real “Glockenspiel” signal, which contains some noise itself 

and consequently the comparison with the original signal is not 

ideal. First, the (noiseless) ground truth is not known. Second, 

the signal contains different frequency components from per- 

turbed harmonics in the tonal layer and sharp transitions in the 

transient layer, neither of which are modeled by the operator in 

generalized TV—nevertheless, the result is still better than for 

conventional TV. More advanced applications of generalized 

TV for sound wave processing can be devised in future, such as 

the inclusion of multiple regularization terms with different op- 

erators each (e.g., for different frequencies and harmonics) and 

an additional model to deal with the transient layer. 

 

V. CONCLUSION 

TV regularization has become a widely applied scheme with 

edge-preserving properties. Extensions have mainly focused on 

the use of higher order derivatives [12]–[17] and recently also 

on nonlocal generalizations [44]. In this paper, we extended 

the basic TV concept further by introducing a general differen- 

tial operator  instead of the derivative  . This allows a great 

deal of flexibility since we can take into account the presence 

of a linear system and different types of driving signals. From 

digital signal processing view, we build the simplest discrete 

approximation of the differential operator  and we define  

them explicitly as FIR/IIR filters. Generalized TV scheme is 

appealing for many signal processing applications, in partic- 

ular, when the system can be expressed or approximated in 

terms of differential operators. We illustrated our framework 

by considering a third-order linear system. In order to solve the 

regularization problem, we proposed an alternative algorithm 

based on the dual form of TV. This work can be considered   

as the analysis prior counterpart of exponential spline wavelets 

[27] or generalized Daubechies wavelets [28]; indeed, these 

wavelets are generalizations that can be tuned to a given dif- 

ferential operator and their use in regularized reconstruction 

proach is heavily inspired on the continuous domain, future re- 

search is needed to tighten the mathematical link between the 

proposed signal processing approach (in the discrete domain) 

and proper generalization of TV in the continuous domain. We 

believe that our approach is promising in this respect because 

in recent work [45] it was shown that the signal-processing 

approach for conventional TV (that is,  -norm of finite differ- 

ences) can be linked to proper continuous-domain modeling of 

stochastic processes. 

Finally, we mention that another application of generalized 

TV could be to perform system identification; i.e., when strong 

assumptions on the (sparsity of the) driving signal can be made, 

one can attempt to retrieve the form of and, for model se- 

lection, evaluate the performance of the estimated operator by 

statistical methods such as Akaike’s information criterion and 

its extension for the state-space representation of linear sys- 

tems [46]. 

APPENDIX 

PROOF OF PROPOSITION 1 

Proof: We make the proof by construction. For the first- 

order differential operator   for which 

and , the corresponding discrete operator, , becomes 

; see [47]. 

For the differential operator   of order 

and , we can obtain the filter by successive 

convolutions (leading to support of  ); the -transform of 

is then 

 

  (12) 

where      is a polynomial with 2 coefficients  
with . Note that we can express (12) benefiting the 

polynomial multiplication which leads to the convolution as 

                    (13) 

where  and   is the convolution operator. 

Therefore, we can express the filter as 
 

  

with a change of variables  , , 

  we have 

  (14) 

 
Similarly, for the general differential operator, , with 

we have in -domain 

        (15) 

where is represented explicitly in (14). Note that the 

filter in (15) has infinite support in time, therefore stability 

should be assured. Depending on the poles of the operator, we 
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find a combination of causal and anti-causal filters that 

guarantee stability; e.g., for  and , we have either 

or , where  

is the unit step function. In practice, the filter with input and 

output can be reformulated and implemented as in a recursive 

way by providing the realization of causal and anti-causal parts 

separately. To this aim, we represent the inverse filter 

 
            (16) 

by the causal and anti-causal filters 

 

                      (17) 

where            is a vector of length . Then the cor- 
responding recursive algorithm can be easily derived from the 

-domain representation. Here we will concentrate on the anti- 

causal part (the derivation for the causal part is similar). To ob- 

tain  , we consider 

 

from which we find 

 

 
From (14), we can derive the explicit time domain expression 

for the anti-causal filter  as 
 

(18) 

Therefore, we obtain 
 

 
where we used . 

Let us give an example for the third-order differential oper- 

ator  . The FIR filter then becomes 
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