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Abstract: Here we describe a systematic strategy from applied mathematics for probabilistic 

climate modeling. One of the topics discussed was the probabilistic modeling of mid-latitude low-

frequency variations due to several communication patterns, including the central role and 

physical mechanisms responsible for multiplicative noise. Here, we develop a new low-

dimensional stochastic model that mimics key features of general circulation models (GCMs) and 

test the accuracy of stochastic modal reduction methods. The second topic discussed here is the 

systematic design of probabilistic mesh models to capture irregular and highly intermittent 

features that are not resolved by deterministic parameterization. A recently applied mathematical 

construction principle for discontinuous stochastic sequence modeling is demonstrated in the 

idealized environment of deep tropical convection. The practical effect of this stochastic model 

on both slowing convective coupled waves and increasing jitter is shown here. 
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1. Introduction 

Stochastic modelling for climate is important for understanding the intrinsic variability of dominant low-

frequency teleconnection patterns in climate, to provide cheap low-dimen- sional computational models 

for the coupled atmosphere-ocean system, and to reduce model error in standard deterministic computer 

models for extended-range prediction through appropriate stochastic noise (Palmer 2001). 

The present contribution is a research-expository paper on systematic strategies for stochastic 

climate modelling from the perspective of modern applied mathematics. In the modern applied 

mathematics ’modus operandi’ rigorous mathematical analysis, qualita- tive, asymptotic, and numerical 

modelling are all blended together in a multi-disciplinary fashion to provide systematic guidelines to 

address real world problems (Majda 2000). For stochastic modelling in climate, the modern applied 

mathematics tool kit includes stochas- tic differential equations and discontinuous Markov jump 

processes (Gardiner 1985), sys- tematic asymptotic reduction techniques, nonlinear dynamical systems 

theory, and ideas from both statistical physics (Majda & Wang 2006) and mathematical statistics 

(Kravtsov et al. 2005; Majda et al. 2006a); mathematical rigour provides unambiguous guidelines in 

idealised models. Another facet of the modern applied mathematics philosophy is the 
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development of qualitative models which represent a Platonic ideal for central issues simul- taneously in 

diverse scientific disciplines such as material science, biomolecular dynamics, and climate science. 

In section 2 below we illustrate and apply this modern applied mathematics philosophy to stochastic 

modelling of the low-frequency variability of the atmosphere. The systematic mathematical theory 

(Majda et al. 1999, 2001, 2002, 2003, 2006b; collectively referred to as MTV hereafter; Franzke et al. 

2005, Franzke & Majda 2006) for these problems is briefly reviewed including the central role and 

physical mechanisms responsible for mul- tiplicative noise in the low-frequency dynamics. In this 

context, the Platonic ideal from applied mathematics is the truncated Burgers-Hopf model (Majda & 

Timofeyev 2000). A new simplified low-dimensional stochastic model which reproduces key features of 

atmo- spheric GCM’s is utilised there to test the fidelity of stochastic mode reduction techniques. A 

recent diagnostic statistical test with firm mathematical underpinning for understand- ing and 

interpreting the dynamical sources of the small departures from Gaussianity in low-frequency variables 

(Franzke et al. 2007) is also developed there. 

While section 2 deals with applied mathematical modelling through stochastic differ- ential 

equations, section 3 is devoted to the systematic development of stochastic lattice models to capture 

unresolved features that are highly intermittent in space and time such as deep convective clouds, cloud 

cover in sub-tropical boundary layers, sub-mesoscale eddies in the ocean, and mesoscale sea-ice cover. 

Here the mathematical tools involve a family of discontinuous Markov jump processes with multi-scale 

behaviour in space-time called stochastic spin-flip models. The key mathematical development involves 

systematic strategies to coarse grain such stochastic spin-flip models to achieve computational effi- 

ciency while retaining crucial features of the microscale interactions (Katsoulakis et al. 2003a, 2003b; 

Katsoulakis & Vlachos 2003). The use of such stochastic lattice models to parametrise key features of 

tropical convection is briefly reviewed (Majda & Khouider 2002; Khouider et al. 2003). For the 

coupling of continuum models like a GCM to a stochastic lattice model as well as in many diverse 

applications, an applied mathemat-  ics Platonic ideal model has recently been introduced and analysed 

by Katsoulakis et al. 

(2004, 2005, 2006, 2007; hereafter KMS). This model consists of a system of ODE’s for continuum 

variables Ẋ , 

dẊ 

dt = Ḟ (Ẋ , σ) (1.1) 
two-way coupled to a stochastic spin-flip model written abstractly here as 

d 
Ef (σ) = ELf (σ) (1.2) 

dt 

where σ denotes the spatial coverage, L is the generator, f is a test function, and E de- notes the 

expected value. This idealised class of models has been utilised to systematically analyse the effects of 

various coarse-graining procedures on processes with intermittency, large-scale bifurcations, and 

microscale phase transitions (KMS 2004, 2005, 2006, 2007). A concrete example for tropical convection 

in climate is given in section 3. A new appli- cation of these stochastic lattice models to capture 

intermittent features and improve the fidelity of deterministic parametrisations of convection with clear 

deficiencies is developed in section 3. First the systematic design principles for (1.1) and (1.2) (KMS 

2006, 2007) are utilised to calibrate a stochastic column model for tropical convection with intermit- 

tency; then new results are presented on the practical effect of slowing down convectively coupled 

waves and increasing their fluctuations through the stochastic lattice models. 
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2. Systematic Low Dimensional Stochastic Mode Reduction and 

Atmospheric Low-Frequency Variability 

A remarkable fact of Northern Hemisphere low-frequency variability is that it can be ef- ficiently 

described by only a few teleconnection patterns which explain most of the total variance (e.g. Wallace & 

Gutzler 1981). These few teleconnection patterns not only exert a strong influence on regional climate 

and weather, they are also related to climate change (Hurrell 1995). These properties of teleconnection 

patterns make them an attractive choice as basis functions for climate models with a highly reduced 

number of degrees of free- dom. The development of such reduced climate models involves the solution 

of two major issues: (1) How to properly account for the unresolved modes, also known as the closure 

problem; and (2) How to define a small set of basis functions which optimally represent the dynamics of 

the major teleconnection patterns. This section addresses primarily issue 

(1) and presents a rigorous strategy of how to systematically account for the unresolved degrees of 

freedom. 

The simplest approach to derive highly truncated models of teleconnection patterns is to empirically 

fit simple stochastic models (e.g. autoregressive models and fractionally dif- ferenced models) to 

individual scalar teleconnection indices (Feldstein 2000; Stephenson et al. 2000; Percival et al. 2001). 

Statistical tests usually cannot distinguish if short- or long-memory models provide the better fit. A 

more complex approach, which also tries to capture deterministic interactions between different 

teleconnection patterns, is to linearise the equations of motion around a climatological mean state. Such 

models can be deter- mined empirically from data or by using the linearised equations of motion. These 

models can either be forced by a random forcing (Branstator 1990; Newman et al. 1997; Whitaker & 

Sardeshmukh 1998; Zhang & Held 1999) or by an external forcing representing tropical heating 

(Branstator & Haupt 1998). To ensure stability of these linear models damping is added according to 

various ad hoc principles. There is a recent survey of such modelling strategies (Delsole 2004). 

A more powerful method is to empirically fit nonlinear stochastic models with possi- bly 

multiplicative (state dependent) noise by using the Fokker-Planck equation (Gardiner 1985; Sura 2003; 

Berner 2005). To reliably estimate the drift and diffusion coefficients  in the Fokker-Planck equation is a 

subtle inverse problem which requires very long time series and is further complicated by the need to 

retain the leading order eigenvalue struc- ture of the Fokker-Planck operator in order to keep the 

autocorrelation time scales of the original model (Crommelin & Vanden-Eijnden 2006); the fitting 

procedure in this most recent work is the most attractive current regression strategy for low-frequency 

behaviour. Recently Kravtsov et al. (2005) have developed a simplified nonlinear regression strategy 

which produces very good results for a three-layer quasi-geostrophic model with a realistic climate. 

However, order 2000 regression coefficients need to be fitted in a model with order 1000 state variables to 

achieve these results. Some inherent limitations of this approach in describing the correct physics are 

discussed briefly below in a simplified model. 

All the work presented above derives reduced models by regression fitting of the re- solved modes. 

Another approach is to take advantage of the basis function property of teleconnection patterns. 

Schubert (1985), Selten (1995) and Achatz & Branstator (1999) developed low-order models with EOFs 

as basis functions. Truncated EOF models expe- rience climate drift due to the neglected interactions 

with the unresolved modes. Selten (1995) and Achatz & Branstator (1999) parameterise these neglected 

interactions by a lin- ear damping, whose strength is determined empirically. A possibly more powerful 

tool to 
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represent the dynamics of a system are Principal Interaction Patterns (PIP; Hasselmann 1988; Kwasniok 

1996, 2004). The calculation of PIPs takes into account the dynamics of the model for which one tries to 

find an optimal basis and also often involves ad hoc clo- sure through linear damping and an ansatz for 

nonlinear interactions. Crommelin & Majda (2004) compare different optimal bases. They find that 

models based on PIPs are superior to models based on EOFs. On the other hand, they also point out that 

the determination of PIPs can show sensitivities regarding the calculation procedure, at least for some 

low- order atmospheric dynamical systems with regime transitions. This feature can make PIPs possibly 

a less attractive basis. 

Majda et al. (1999, 2001, 2002, 2003, 2005, 2006b) provide a systematic framework for how to 

account for the effect of the fast degrees of freedom on the slow modes in com- bination with using the 

dominant teleconnection patterns as basis functions. In contrast to the empirical fitting procedures 

applied in the studies discussed above the stochastic mode reduction strategy put forward in MTV 

predicts the functional form of all deterministic and stochastic correction terms and provides a minimal 

regression fitting procedure of only the fast modes (Franzke et al. 2005; Franzke & Majda 2006). In 

general only an estimate for the variance and eddy turnover time for each fast mode is needed. It has 

been applied and tested on a wide variety of simplified models and examples. 

 

 
 

(a) Overview of the MTV Strategy 

 

We illustrate the ideas for stochastic climate modelling by considering the following prototype 

equation for geophysical flow: 

∂u 
= F + Lu + B(u, u). (2.1) 

∂t 

 
 

position through the variables ũ and uJ which are characterised by strongly differing time scales (MTV 

1999, Majda et al. 2005). The variable ũ denotes a slow low-frequency mode In stochastic climate 

modelling, the variable u is decomposed into an orthogonal decom- 

to the uJ variables (also referred to as fast mode). By decomposing u = ũ + uJ in terms of (also referred to 

as climate mode) of the system, which evolves slowly in time compared some optimal energy norm 

basis we can write them as 

 

 
N R N 

u = 
Σ 

aiei = 
Σ 

αiei + 
Σ 

βjej, (2.2) 

with ũ = 
ΣR     

αiei, and uJ = 
ΣN 

βjej , where R is the number of climate modes, ai 

denote the expansion coefficients, αi (βj) are the expansion coefficients of the slow (fast) modes. The 

use of the energy norm ensures the conservation of energy by the nonlinear operator (Selten 1995). 

By properly projecting the energy norm basis, derived from the geophysical model, onto Eq. (2.1), 

we get two sets of equations for slow αi and fast βi 
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modes: 

α̇ (t)   =   εHα + 
Σ 

Lααα  (t) + 
1 Σ 

Lαββ  (t) + 
Σ 

Bαααα  (t)α  (t) 

+ 
2 Σ 

Bααβα (t)β (t) + 
1 Σ 

Bαβββ (t)β (t) (2.3) 

β̇ (t) = εHβ + 
1 Σ 

Lβαα (t) + 
1 Σ 

Lβββ (t) + 
1 Σ 

Bβααα (t)α (t) 

+ 
2 Σ 

Bβαβα (t)β (t) +
 1 Σ 

Bββββ (t)β (t), (2.4) 

 

where the nonlinear operators have been symmetrised, i.e. Bijk = Bikj in (2.3) and (2.4). The upper 

indices α and β indicate the respective subsets of the full operators in (2.1). Here 

ε is a small positive parameter which controls the separation of time scale between slow and fast modes 

and measures the ratio of the correlation time of the slowest non-climate mode 

uJ to the fastest climate mode ũ. In placing the parameter in front of particular terms we 

modes alone. Ultimately, ε is set to the value ε = 1 in developing all the final results tacitly assume that 

they evolve on a faster time scale then the terms involving the climate (MTV 2002, 2003), i.e. 

introducing ε is only a technical step in order to carry out the MTV 

mode reduction strategy. Such a use of ε has been checked on a wide variety of idealised examples 

where the actual value of ε ranges from quite small to order one (MTV 2002, 2003, 2006b; Majda & 

Timofeyev 2004). Following MTV (1999, 2001, 2002, 2003, 2006b) and Franzke et al. (2005) the mode 

elimination procedure is based on the assumption that the dynamics of the fast modes alone in Eq. (2.4), 

i.e. the dynamical system 

ċ i  = 
Σ 

Bβββcjck, (2.5) 

jk 

 

is ergodic and mixing with integrable decay of correlation. In other words, we assume that for almost all 

initial conditions, and suitable function f and g, we have 
 

lim 
1 
∫ T ( ( )) = 

where (·) denotes expectation with respect to some appropriate invariant distribution, and 
 

G(s) = lim 
1 
∫ T g(c(t + s), c(t)) dt − lim 

 1 
∫ T ∫ T 
 

g(c(t), c(tJ))) dt dtJ 
 
(2.7) 

T →∞ T   0 T →∞ T 0 0 

 

is an integrable function of s, i.e.     ∞ G(s)ds   <      . Furthermore, we assume that the    it can be shown 

in the limit ε    0 (Kurtz 1973; MTV 2001) that the dynamics of the    low order statistics for the fast 

modes in (2.5) are Gaussian. Under the above assumptions, slow modes αi in (2.3) can be written as the 

following Ito stochastic equation for the slow 

2 

(f) (2.6) 
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modes alone: 

dαi(t)   =   λB Hαdt + 
Σ 

Lαααj (t)dt + 
Σ 

Bααααj (t)αk(t)dt  

 

+λ2 
Σ 

L̃
(2)

αj (t)dt + λA

√
2 
Σ 

σ(2)dW (2) 

+λ2  
Σ 

L̃
(3)

αj (t)dt + 
Σ 

M̃ijklαj (t)αk(t)αl(t)dt  j 
 
 

+λ2 
Σ 

L̃
(1)

αj(t)dt  

jkl 

+λM λL H̃ (1)
dt + 

Σ 
B̃ijkαj (t)αk(t)dt  

jk 
 
 +λAλF H̃ (2)

dt 

+
√

2 
Σ 

σ(1)(α(t))dW (1), (2.8) 

where the nonlinear noise matrix σ(1) satisfies, 

λ2 Q(1) + λLλM 
Σ 

Uijkαk(t) + λ2 
Σ 

Vijklαk(t)αl(t) = 
Σ 

σ(1)(α(t))σ(1)(α(t)). 
L   ij M 

k kl 

ik jk 

k 
 

(2.9) 

It is guaranteed (MTV 2001) that the operator on the left hand side of (2.9) is always pos- itive definite 

ensuring the existence of the nonlinear noise matrix on the right hand side. All coefficients are defined 

explicitly in MTV (2001) and Franzke et al. (2005). A com- prehensive mathematical theory of the 

stochastic mode reduction strategy for geophysical applications is developed in MTV (2001) with many 

new mathematical phenomena in the resulting equations explored there. 

To see which of these correction terms play a vital role in the integrations of the low- order stochastic 

model (2.8) we grouped the interaction terms between slow and fast modes according to their physical 

origin and set a parameter λi in front of the corresponding in- teraction coefficient. The bare truncation 

is indicated by a λB and describes the interaction between the slow modes. The interaction between the 

triads Bαββ and Bβαβ gives rise to additive noise and a linear correction term and arises from the 

advection of the fast modes by the slow ones; we name these triads “additive” triads and set a λA in front 

of them (MTV 1999, 2001, 2002, 2003). The second type of triad interaction is between Bααβ and Bβαα. 

These interactions create multiplicative noises and cubic nonlinear correction terms (MTV 1999, 2001, 

2002, 2003); we call them “multiplicative” triads in the following and indicate them by a λM . These 

triad interactions describe the advection of slow modes by the fast modes which induce tendencies in 

the slow modes. The linear coupling between the slow and fast modes Lαβ, and Lβα, give rise to 

additive noise and a linear correction term (MTV 2001; Franzke et al. 2005), which is called the 

augmented linearity here and is indicated by a λL. The augmented linearity describes the effect of the 

linear interaction be- tween the fast (slow) modes and the climatological mean state onto the slow (fast) 

modes 

j j 
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and is the main interaction captured in the linear stochastic modelling strategy (Delsole 2004). We set a 

λF in front of the last remaining interaction term Lββ, the linear coupling of the fast modes. The quadratic 

nonlinear corrections, a forcing term and a further multi- plicative noise contribution are caused by the 

interaction between the linear coupling terms and the “multiplicative” triads. Another forcing correction 

term comes from the interaction between “additive” triads and the linear coupling of the fast modes. 

In chapter 3 of Majda et al. (2005) a simplified three mode elementary “toy climate model” is 

discussed and the MTV procedure is applied explicitly to that example. The origin of all the terms in 

(2.8) is developed in a transparent fashion in these examples. Once the low-order stochastic model has 

been developed from the above procedure, one can asses the importance of the various deterministic and 

stochastic processes systemati- cally by varying the coefficients λB, λA, λL, λM  and λF  systematically in 

(2.8) (Franzke   et al. 2005) and even develop simple physically motivated regression fitting strategies 

(Franzke & Majda 2006). In interesting recent work, Sura & Sardeshmukh (2007) have utilised scalar 

linear stochastic models with multiplicative and additive noise to explain non-Gaussian SST variability. 

If the reduced stochastic models in (2.8) from the MTV pro- cedure are linearised at the climate mean 

state, they automatically produce vector systems of linear stochastic equations with both multiplicative 

and additive noise with the same structure, with clear sources for the underlying physical contributions 

to this equation. 

 

 

 

 

 

 

 
(b) Idealised Models for Stochastic Mode Reduction 

 

The idealised models, where the procedure has been tested, have order 100 degrees of freedom and 

include those with trivial climates (MTV 2002), periodic orbits or multiple equilibria (MTV 2003), and 

heteroclinic chaotic orbits coupled to a deterministic bath of modes satisfying the truncated Burgers-

Hopf equation (Majda & Timofeyev 2000, 2004). The truncated Burgers-Hopf equation is a toy model 

with some remarkable features mimic- ing behaviour in the real atmosphere; it has a well defined 

equipartition spectrum and a sim- ple scaling theory for correlations with the large scales decorrelating 

more slowly than the small scales, i.e. low-frequency variability. Furthermore, these predictions are 

confirmed with very high precision by numerical simulations (Majda & Timofeyev 2000; Majda & 

Wang 2006). The MTV procedure has been validated in these examples even when there is little 

separation of time scales between slow and fast modes. In the example of a four di- mensional resonant 

system with chaotic dynamics coupled to the truncated Burgers system, only one empirical regression 

fitting coefficient is used and complex bifurcation diagrams and PDF’s in a climate change scenario are 

reproduced by the four dimensional stochastic mode reduction resulting from the MTV procedure 

applied to the 104 degree of freedom deterministic system. An especially stringent recent test is the 

application of this proce- dure to the first few large scale modes of the truncated Burgers equations in 

the turbulent cascade (MTV 2006b). 
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∂t ∂x ∂x 
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(c) A priori stochastic modelling for mountain torque 
The ideal barotropic quasi-geostrophic equations with a large scale zonal mean flow U 

on a 2π × 2π periodic domain (Carnevale & Frederiksen, 1987) are given by 

∂q 
+ ∇ ⊥ψ · ∇ q + U ∂q + β ∂ψ = 0 

q = ∆ψ + h (2.10) 

dU  =  12 

∫ 
h∂ψ dxdy 

with q the potential vorticity, U the large scale zonal mean flow, ψ the stream function, and h the 

topography. In (2.10), the mean flow changes in time through the topographic stress; this effect is the 

direct analog for periodic geometry of the change in time of an- gular momentum due to mountain 

torque in spherical geometry (Frederiksen et al. 1996; Madja & Wang 2006). Here the a priori stochastic 

modelling strategy (MTV 1999, 2001) is applied to the stochastic modelling of the topographic stress 

terms in (2.10) as an analog for mountain torque; thus, the variable, U , is the slow variables while all the 

modes ψk are fast variables for the MTV procedure. 

In this example the systematic stochastic modelling procedure (MTV 2003) results in the predicted 

nonlinear reduced equation for U , 
 

 

dU  
= −γ(U )U + 

γJ(U ) 
+ 

. 
2γ(U ) 

Ẇ
 

 

(2.11) 

dt 

where γJ(U ) = dγ/dU and 

αµ αµ 

γ(U ) = 2 
k 

µk2 |Hk|
2 

γk 

γ2 + (Ωk − kxU )2 

. (2.12) 

Here Ω = kxβ − Uk is the Rossby wave frequency Doppler shifted by the mean flow. 
k |k|2 x 

Under the additional assumption that  kxU  2     γ2 + (Ωk)2, a standard predicted linear stochastic 

model for U  emerges from (2.11) with γ  = γ(0) from (2.12) and γJ(0) = 0 (MTV 1999, 2001). It is 

shown in MTV 2003 that this nonlinear stochastic equation is 

superior to the linear one for large amplitude topography where ε ∼= 0.7. This is the sim- plest example 

with multiplicative noise. Egger (2005) has utilised the systematic strategies 

from MTV (1999, 2003) to improve regression strategies for analysing observational data for angular 

momentum. In Majda et al. (2006a), the recent systematic regression fitting strategy mentioned earlier 

(Crommelin & Vanden-Eijnden 2006) is applied to (2.10) and independently confirms the predictions in 

(2.11) and (2.12). 

 
(d) Geophysical and Climate Models 

Franzke et al. (2005) put the above systematic stochastic mode reduction strategy in a form which 

makes the practical implementation of the MTV procedure in complex geo- physical models simpler 

with the same reduced stochastic equations for the fast modes. In this study a T21 truncated barotropic 

model on the sphere with a realistic climate was used to derive low-order stochastic models by the MTV 

strategy. Low-order models with as little as 2 slow modes succeed in capturing the geographical 

distributions of the clima- tological mean field, the variance and the eddy forcing.  

Σ 
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Recently, Franzke & Majda (2006) applied the systematic stochastic mode reduction strategy to a 

baroclinic three layer quasi-geostrophic model on the sphere (Marshall and Molteni 1993) which 

mimics the climatology of the European Centre for Medium-Range Weather Forecasts (ECMWF) 

reanalysis data. The low-order stochastic climate model con- sists of the climate modes as slow modes 

defined as the leading total energy norm EOFs and the stochastic mode reduction procedure predicts all 

forcing, linear, quadratic and cu- bic correction terms as well as additive and multiplicative noises; these 

correction terms and noises account for the interaction of the climate modes with the neglected non-

climate modes and the self-interaction amongst the non-climate modes. For the three layer quasi- 

geostrophic model low-order stochastic models with 10 or less climate modes reproduce the 

geographical distributions of the standard deviation and eddy forcing well. They un- derestimate the 

standard deviations by at most a factor of about 1.5. Furthermore, they re- produce the autocorrelation 

functions reasonably well. A budget analysis shows that both linear and nonlinear correction terms as 

well as both additive and multiplicative noises are important. The physical intuition behind the noises as 

derived from the MTV proce- dure is as follows: The additive noise stems from the linear interaction 

between the fast modes and the climatological mean state, and the multiplicative noise comes from the 

ad- vection of the slow modes by the fast modes. All these deterministic correction terms and noises 

(both additive and multiplicative) are predicted by the systematic stochastic mode reduction strategy, 

whereas, previous studies a priori approximate the nonlinear part of the equations by a linear operator 

and additive noise. This noise is typically white in time but may be spatially correlated. In other words, 

these studies truncate the dynamics on both the slow and fast modes, and add ad hoc damping in order 

to stabilise the linear model (Whitaker & Sardeshmukh 1998; Zhang & Held 1999). The systematic 

MTV approach summarised briefly below truncates the dynamics only on the fast modes and predicts 

the functional form of all necessary nonlinear correction terms and noises; therefore, it also predicts the 

necessary damping. 

The MTV stochastic climate models for this application experience some climate drift. A minimal 

empirical MTV model without climate drift can be constructed through three parameter regression 

fitting by down scaling the bare truncation terms and up scaling the two important MTV processes 

(augmented linearity and multiplicative triads). These em- pirical MTV stochastic climate models with 

minimal regression fitting still capture the geographical distribution of the standard deviation and eddy 

forcing and the autocorrela- tion functions reasonably well, while not experiencing climate drift. This 

surprising result can be interpreted as the fact that the climate modes are predominantly driven by the 

fast modes and the self-interactions among the slow modes are less important, as can already be seen 

from the bare truncation models, which do not capture any feature of the actual dynamics. Furthermore, 

these empirical MTV stochastic climate models suggest that the bare truncation is likely the cause of the 

climate drift. Integrations of bare truncation mod- els (without any MTV correction terms) already 

produce a big climate drift (Franzke and Majda 2006). The MTV mode reduction procedure is able to 

reduce the climate drift in most of the slow modes, but is not able to overcome it completely. Previous 

results with a variety of simplified models show no climate drift in a MTV framework (MTV 1999, 2001, 

2002, 2003; Majda & Timofeyev 2004). This is likely because, these simplified models are constructed in 

such a way that they have an optimal basis which captures the dynamics  of the climate modes. This 

gives evidence that total energy norm EOFs are not an ade- quate dynamical basis in capturing the 

dynamics of the slow modes. Further details of this application can be found in Franzke & Majda (2006). 
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σ1  

σ2  

ε ε 

1

Σ 

 

(e) A Simple Stochastic Model with Key Features of Atmospheric Low-Frequency 

Variability 

In this section we present a 4 mode stochastic climate model of the kind put forward in Majda et al. 

(2005; Chapter 3). This simple stochastic climate model is set up in such a way that it features many of the 

important dynamical features of comprehensive GCMs but with many fewer degrees of freedom. Such 

simple toy models allow the efficient exploration of the whole parameter space which is impossible to 

conduct with GCMs. Thus, we are able to test the predictions of the above framework with direct model 

experiments by switching on and off certain terms rather than relying on diagnostic methods. 

While this model is not rigorously derived from a geophysical flow model (e.g. barotropic vorticity 

equation), it has the same functional form one would end up with when deriving  a reduced stochastic 

model from a geophysical model. Thus, consistent with geophysical flow models the toy model has a 

quadratically nonlinear part which conserves energy, a linear operator, and a constant forcing, which in a 

geophysical model would represent the effects of external forcing such as solar insulation and sea surface 

temperature. The lin-  ear operator has two contributions: One is a skew-symmetric part formally similar 

to the Coriolis effect and topographic Rossby wave propagation. The other is a negative definite 

symmetric part formally similar to dissipative processes such as surface drag and radiative damping. 

The model is constructed in such a way that there are two modes, denoted by x, that evolve more 

slowly than the other two modes, y. In realistic models there would be very many additional fast modes 
representing e.g. synoptic weather systems or convection. To 
mimic their combined effect, we include damping and stochastic forcing − γ 

y + √σ  Ẇ  in 
the equations for y where W denotes a Wiener process. The motivation for this approx- imation is that 

these fast modes are associated with turbulent energy transfers and strong mixing and that we do not 

require a more detailed description since we are only interested in their effect on the slow modes. The 

two fast modes carry most of the variance in this model but as noted earlier, these two modes are 

surrogates in the model for the entire bath of fast modes so this is very natural. The parameter ε controls 

the time scale separation between the slow and fast variables. For testing the predictions of the general 

framework that is derived in the previous section, we will treat the two slow modes x as the climate 

modes and the two fast modes as the non-climate modes y. Therefore, our toy model has the following 

form 

dx1 =   ((−x2 (L12 + a1x1 + a2x2) + d1x1 + F1) + L13y1 + b123x2y1) d(2t .13a) 

dx2 =   ((+x1 (L21 + a1x1 + a2x2) + d2x2 + F2) + L24y2 + b213x1y1) d(2t.13b) 

dy1 = 
.

−L13x1 + b312x1x2 + F3 − 
γ1 

y 
ε 

dt + √
ε
dW1 (2.13c) 

dy2 = 
.

−L24x2 + F4 − 

γ2 
y 

ε dt + √
ε
dW2 (2.13d) 

following relation: b123 + b213 + b312 = 0 while the nonlinear bare truncation terms also To ensure energy 

conservation of the nonlinear operator the coefficients have to satisfy the conserve energy. In this 

particular set up the slow modes and the fast modes are coupled 

through two mechanisms; one is a skew-symmetric linear coupling and the other is nonlin- ear triad 

interaction. The nonlinear coupling involving bijk produces multiplicative noise in the MTV framework 

(MTV 1999, 2003; see also Eq. (2.15)) so we refer to it as a multi- 

2

Σ 



 

 

Juni Khyat                                                                                                                 ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                                             Vol-12 Issue-07 No.03 July 2022 

Page | 276                                                                                                  Copyright @ 2022 Author  

T
h
ir
d
−

o
rd

e
r 

M
o
m

e
n
t 

A
u
to

c
o
rr

e
la

ti
o
n

 F
u

n
c
ti
o
n
 

T
h
ir
d
−

o
rd

e
r 

M
o
m

e
n
t 

A
u
to

c
o
rr

e
la

ti
o
n

 F
u

n
c
ti
o
n
 

→ 

2 

γ 
+ε 1 b213b123x1(t)dt 

γ 
+ε   1 (L13 + b x (t)) bdt123 2

 213 

ε → 

r r<x  (t)x  
(t)> 

3 

ε 
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Figure 1. Autocorrelation function and third-order moment for different values of ε. Solid line: stochastic 

dynamics; dashed line: reduced dynamics. 

 

as ε 0 is done explicitly through elementary manipulations (MTV 1999, 2001; Majda et plicative triad. 

One advantage of the model in (2.13) is that the stochastic mode reduction al. 2005). The corresponding 

reduced Itô SDE for the climate variables alone is given by 

dx1(t) = (−x2(t) (ω + a1x1(t) + a2x2(t)) + d1x1(t) + F1) dt 

+ 
ε  

(L   F  − L   L   x (t) + b F x (t) + L  b x  (t)x (t) 

γ1 
13 3 13 13 1 123 3 2 13 312  1 2 

−L13b123x1(t)x2(t) + b312b123x1(t)x2(t)
Σ 

dt 

σ 
2 

2 
1 √

ε
σ1 

(L + b x  (t)) dW (t) (2.14a) 

γ1 
13 123  2 1 

dx2(t) = (x1(t) (ω + a1x1(t) + a2x2(t)) + d2x2(t) + F2) dt 

+ (L24F4 
γ2 

− L24 L24 
x2(t)) dt (2.14b) 

σ 
2 

2 
1 

+
√

ε
σ2 

L  dW (t) (2.14c) 

γ2 
24 2 

Note that coarse graining time as t t amounts to setting ε = 1. 
To evaluate the performance of the reduced dynamics we calculate the autocorre- 

lation function ρ(s) = <x
r (t+s)xr (t)>

 and the third-order two-time moment K(s) = 
<xr2 (t+s)xr (t)> 

, which is a measure of deviations from Gaussianity (MTV 2002; Majda 
<x(t)r2 > 2 

cellent agreement for moderate values of ε = 0.1, 0.5 and still good agreement for ε = 1.0 et al. 2005). 

The comparison of the reduced model with the full model results shows ex- for ε = 0.1 and also ε = 0.5, 

even though slightly less well. For large values of ε the (Figs. 1 and 2). Especially, the non-Gaussian 
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features are reproduced with high accuracy 
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Figure 2. Joint PDF of the slow modes x1 and x2 for ε = 0.1. Left column: stochastic dynamics, Right column: 
reduced dynamics. 

 

 

 

 

reduced dynamics get the sign of the non-Gaussianity right. All of the reduced models   in (2.11), (2.12), 

(2.13) and (2.14) cannot be approximated by the interesting regression strategy of Kravtsov et al. 2005) 

because there is nonlinear multiplicative noise in (2.13) and (2.14), nonlinear triad interaction in (2.13) 

and augmented cubic nonlinearity in (2.14). Thus these regression strategies necessarily have large 

model error in this example. 

 

 

 
(f ) A Mathematical Framework for the Mean Tendency Equation as a Dynamical 

Diagnostic 

 
In this section we provide a general framework to estimate the origin of nonlinear signatures of 

planetary wave dynamics and how important the observed deviations from Gaussianity are for the 

planetary waves (Franzke et al. (2007). This general framework diagnoses contributions to the mean 

values of state dependent tendencies in a low dimen- sional subspace of complex geophysical systems. 

The mean phase space tendencies in some GCMs show distinct nonlinear signatures in certain planes 

which are spanned by its leading EOFs (Branstator & Berner 2005; Selten & Branstator 2004; Franzke et 

al. 2007). Those leading EOFs also show only weak deviations from Gaussianity; mostly in the form of 

weak skewness and kurtosis and in the case of joint PDFs multiple radial ridges of en- hanced density 

(Berner & Branstator 2007; Franzke & Majda 2006). This mathematical framework can be applied to 

complex geophysical systems and reveals how much the self- interaction amongst the modes spanning 

those planes (climate modes) and how much the unresolved modes contribute to these mean phase space 

tendencies and also the effect of the observed small deviations from Gaussianity. 

To derive the mean tendency equation for the resolved modes we split the state vector of a quadratic 

dynamical system into resolved modes α and unresolved modes β and utilise conditional mean 

probability density relations (see Franzke et al. 2007 for more details); there we derived a general 

formula for the conditional mean tendencies for the dynamics 

x
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Σ 

Σ 
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| 

Σ 

∂t 
j∈ IR 

j 

j,k∈ IR 

ijk j 

i j 

∂t 
j 

j 

j,k 

ijk j 

in the resolved variables. 

< 
∂αi 

|α > = F + 
Σ 

L α  + 
Σ 

B α α 
(2.15a) 

+ Lij < βj|α > (2.15b) 
j∈ IU 

+2 
j∈ IR;k∈ IU 

Bijkαj  < βk|α > (2.15c) 

+ 
j,k∈ IU 

Bijk < βjβk|α > (2.15d) 

Note that the right hand side of (2.15a) is the bare truncation restricted to interactions among the 

resolved modes, while (2.15b) and (2.15c) involve all of the conditional mean statistics < βj α >; the 

terms of (2.15c) are associated with multiplicative triad interac- tions (leading to multiplicative noise in 

a MTV framework (MTV 1999; 2003)) of βj; the terms in (2.15d) involve all of the conditional 

interaction statistics < βjβk α > of second moments and include all of the additive triad interactions 

(leading to additive noise in a MTV framework) of βj and βk. Thus, Eq. 2.15 provides a general 

framework to investigate the mean phase space tendencies which allows the decomposition into 

contributions from interactions among the resolved planetary waves themselves and various 

contributions in- volving unresolved degrees of freedom. 

Now we simplify the above conditional mean tendency equation for purely Gaus- sian EOF modes. 

The PDFs in GCMs are nearly Gaussian (Hsu & Zwiers 2001; Berner & Branstator 2007; Franzke et al. 

2005; Franzke & Majda 2006; Majda et al. 2006a),  and there are many geophysical models without 

damping and forcing that exactly satisfy these assumptions such as barotropic flow on the sphere with 

topography (Salmon 1998; Carnevale & Frederiksen 1987; Majda & Wang 2006); thus, it is reasonable 

as a starting point to assume that the PDF is exactly Gaussian. Thus, in the EOF basis the PDF factors 
like 

p(α, β) = 
.
ΠpG(αi)

Σ .
ΠpG(βj )

Σ 
(2.16) 

where pG(αi), pG(βj) are Gaussian distributions with mean zero. Thus, in the Gaussian 
i j 

case, the conditional mean tendency equation simplifies to 

< 
∂αi 

|α > = F + 
Σ 

L α  + 
Σ 

B α α 

 
(2.17a) 

+ Bijjλj (2.17b) 
j 

 

Note that contributions from (2.15b) and (2.15c), i.e. linear coupling and multiplicative triad 

interactions, are identically zero. Thus, in this Gaussian case the conditional mean tendency equation 

recognises bare truncation (2.15a) and a constant forcing from addi- tive triad interactions (2.15d). Since 

the GCM’s have PDF’s with only small departures from Gaussianity the behaviour in (2.16) and (2.17) 

serve as a ’null hypothesis’ for these deviations from Gaussianity in climate models. 

This general framework predicts that in the case of purely Gaussian modes the non- linear signatures 

are stemming from the bare truncation (i.e. the self-interaction amongst 

i ij k 

i ij k 
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the planetary waves resolved in the low-dimensional plane). In Franzke et al. (2007) these diagnostics 

were applied to a plane of two low-frequency EOF’s in a three layer climate model with a nonlinear 

double swirl; the origin of this double swirl is primarily the three contributions in (2.15b, c and d) from 

the unresolved modes and not nonlinear effects from the bare truncation. 

 

 

 
3. Coarse Grained Stochastic Lattice Models for Climate: Tropical 

Convection 

The current practical models for prediction of both weather and climate involve general cir- culation 

models (GCM) where the physical equations for these extremely complex flows are discretized in space 

and time and the effects of unresolved processes are parametrised according to various recipes. With the 

current generation of supercomputers, the small- est possible mesh spacings are about 10-50 km for 

short-term weather simulations and  of order 100 km for short term climate simulations. There are many 

important physical processes which are unresolved in such simulations such as the mesoscale sea-ice 

cover, the cloud cover in sub-tropical boundary layers, and deep convective clouds in the trop- ics. Most 

of these features are highly intermittent in space and time. An appealing way to represent these 

unresolved features is through a suitable coarse-grained stochastic model which simultaneously retains 

crucial physical features of the interaction between the unre- solved and resolved scales in a GCM. In 

work from 2002 and 2003, two of the authors both have developed a new systematic stochastic strategy 

(Majda & Khouider 2002, Khouider et al. 2003) to parametrise key features of deep convection in the 

tropics involving suitable stochastic spin-flip models and also a systematic mathematical strategy to 

coarse-grain such microscopic stochastic models to practical mesoscopic meshes in a computationally 

efficient manner while retaining crucial physical properties of the interaction. 

As regards tropical convection, crucial scientific issues involve the fashion in which  a stochastic 

model effects the climate mean state and the strength and nature of fluctua- tions about the climate 

mean. Here the strategy to develop a new family of coarse-grained stochastic models for tropical deep 

convection is briefly reviewed (Majda & Khouider 2002, Khouider et al. 2003) as an illustrative 

example of the potential use of stochastic lattice models. In (Khouider et al. 2003), it has been 

established that in suitable regimes of parameters, the coarse grained stochastic parametrisations can 

significantly alter the climatology as well as increase wave fluctuations about the climatology. This was 

estab- lished in (Khouider et al. 2003) in the simplest scenario for tropical climate involving  the Walker 

circulation, the east-west climatological state which arises from local region of enhanced surface heat 

flux, mimicking the Indonesian marine continent. Convectively coupled waves in the tropics such as the 

Madden-Julian oscillation play an important role in medium range forecasts yet the current generation of 

computer models fail to represent such waves adequately (Lin et al. 2006). Palmer (2001) has 

emphasised the potential of stochastic parametrisation to reduce the model error in a deterministic 

computer model. Here in an idealised setting, we show how to develop a stochastic parametrisation to 

mod- ify and improve the behaviour of convectively coupled waves in a reasonable prototype GCM; this 

is achieved by following a path guided by the systematic design principle for the idealised model in 

(1.1) (KMS 2006, 2007) to build in suitable intermittency effects. 



 

 

Juni Khyat                                                                                                                 ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                                             Vol-12 Issue-07 No.03 July 2022 

Page | 281                                                                                                  Copyright @ 2022 Author  

≤ ≤ 

q 
←→    { · · · } · · · 

· · · 

Σ 

σ̄I (j∆x, t) = 
∆x

 

(j−1/2)∆x 

 

(a) The Microscopic Stochastic Model for CIN 

 
the generic vector, ̇u, are regarded as known only over a discrete horizontal mesh with ̇uj= In a typical 

GCM, the fluid dynamical and thermodynamical variables, denoted here by 

u̇(j∆x, t) denoting these discrete values. Throughout the discussion, one horizontal spatial 

dimension along the equator in the east-west direction is assumed for simplicity in notation 

and explanation. As mentioned above, the typical mesh spacing in a GCM is coarse with 

∆x ranging from 50 km to 250 km depending on the time duration of the simulation. The stochastic 

variable used to illustrate the approach is convective inhibition. Observationally, 

convective inhibition (CIN) is known to have significant fluctuations on a horizontal spatial scale on the 

order of a kilometer, the microscopic scale here, with changes in CIN attributed to different mechanisms in 

the turbulent boundary layer such as gust fronts, gravity waves, and turbulent fluctuations in equivalent 

potential temperature (Mapes 2000). In (Khouider et al. 2003), it was proposed that all of these different 

microscopic physical mechanisms and their interaction which increase and decrease CIN are too 

complex to model in detail in a coarse mesh GCM parametrisation and instead, as in statistical 

mechanics, should be modelled by a simple order parameter, σI , taking only two discrete values, 
 

σI = 1 

σI = 0 

at a site if convection is inhibited (a CIN site) 

at a site if there is potential for deep convection 

 
(3.1) 

 (a PAC site).  

The value of CIN at a given coarse mesh point is determined by the averaging of CIN over the 

microscopic states in the vicinity of the given mesh point, i.e., 

  1  
∫  (j+1/2)∆x 

Note that the mesh size, ∆x, is mesoscopic, i.e., between the microscale, O(1 km), and the macroscale, 

O(10, 000 km), and that σ̄I  can have any value in the range 0 σ̄I  1. 

Discrete sums over microscopic mesh values (of order 1 km) and continuous integrals are 

utilised interchangeably for notational convenience (Majda & Khouider 2002). 

 
(b) The Simplest Coarse-Grained Stochastic Model 

In practical parametrisation, it is desirable for computational feasibility to replace the microscopic 

dynamics by a process on the coarse mesh which retains critical dynamical features of the interaction. 

Following the general procedure developed and tested in (Kat- soulakis et al. 2003a, Katsoulakis et al. 

2003b, Katsoulakis & Vlachos 2003) the simplest local version of the systematic coarse grained 

stochastic process is developed in (Khouider et al. 2003) and summarised here. 

Each coarse cell ∆xk, k = 1, , m, of the coarse-grained lattice is divided onto q microscopic cells such 

that ∆xk  1 1, 2,  , q  , k = 1,   , m. In the coarse-grained procedure, given the coarse-grained sequence of 

random variables 
 

ηt(k) = 
y∈ ∆xk 

σI,t(y), (3.3) 

so that the average in (3.2) verifies σ̄I (j∆x) = η(k)/q, for j  = k  in some sense, the 

microscopic dynamics is replaced by a birth/death Markov process defined on the variables, 

σI (x, t) dx. (3.2) 
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− 

. Σ 

q − 1 k k 

{0, 1, · · · , q}, for each k such that ηt(k) evolves according to the following probability law. 

Prob
,

ηt+∆t(k) = n + 1 | ηt(k) = n
, 

= Ca(k, n)∆t + o(∆t) 

Prob
,

ηt+∆t(k) = n − 1 | ηt(k) = n
, 

= Cd(k, n)∆t + o(∆t) (3.4) 

Prob
,

ηt+∆t(k) = n | ηt(k) = n
, 

= 1 − 
.

Ca(k, n) + Cd(k, n)
Σ

∆t + o(∆t) Prob
,

ηt+∆t(k) ƒ= n, n − 1, n 

+ 1 | ηt(k) = n
, 

= o(∆t). 
The coarse grained adsorption/desorption rates are given respectively by 

1 

Ca(k, η) = 

τI 

[q − η(k)] 

 
 

C  (k, η) =  
1 

η(k)e−βV̄ (k) (3.5) 

 
where 

d 
τI

 

V̄ (k) = J̄(0, 0) η(k) − 1  + hext (3.6) with the 

coarse grained interaction potential within the coarse cell given by J̄ (0, 0) = 2U0/(q   1) where U0 is the 

mean strength of the potential J (Katsoulakis et al. 2003a, Kat- soulakis et al. 2003b). The coarse-grained 

energy content for CIN is given by the coarse- 

grained Hamiltonian 

H̄ (η) = 
  U0   

Σ 
η(k)

.
η(k) − 1

Σ 
+ hext 

Σ 
η(k). (3.7) 

The canonical invariant Gibbs measure for the coarse-grained stochastic process is a prod- uct measure 

given by 

Gm,q,β (η) = (Zm,q,β )
−1eβH̄ (η)Pm,q (dη) (3.8) where 

Pm,q(dη) is an explicit prior distribution (Katsoulakis et al. 2003b). As shown in (Katsoulakis et al. 

2003b), the coarse-grained birth/death process above satisfies detailed 

balance with respect to the Gibbs measure in (3.8) as well as a number of other attractive theoretical 

features. The simplest coarse-grained approximation given above assumes that the effect of the 

microscopic interactions on the mesoscopic scales occurs within the meso- 

scopic coarse-mesh scale, ∆x, otherwise systematic nonlocal couplings are needed (Kat- 

soulakis et al. 2003b). The accuracy of these approximations is tested for diverse examples 

from material science elsewhere (Katsoulakis et al. 2003a, Katsoulakis et al. 2003b, Kat- soulakis & 

Vlachos 2003) and for the instructive idealised coupled models in (1.1) (KMS, 2004,2005,2006, 2007). 

requires  specification  of  the  parameters,  τI , U0, q  and  the  external  potential  hext(u̇j) as The practical 

implementation of the coarse-grained birth/death process in (3.3)–(3.6)  well as the statistical parameter 

β. The advantages of such a stochastic lattice model are 

the following: 

1) Retains systematically the energetics of unresolved features through the coarse- grained Gibb’s 

measure 
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S = Mσ 
.
(CAPE)  

Σ 
(3.10) 

− 

∂u 
− ᾱ 

∂θ  
= − 

.

C0 
1 
.

u2 + u2

Σ 

u − 
 1  

u 

∂t 
eb em θ 0 eb 

R 

 

2) Has minimal computational overhead since there are rapid algorithms for updating birth death 

processes 

3) Incorporates feedbacks of the resolved modes on the unresolved modes and there are energetics 

through an external field 

4) Includes dynamical coupling through not only sampling the probability distributions of unresolved 

variables but also their evolving behaviour in time is constrained by the large scale dynamics. 

 
(c) The Model Deterministic Convective Parametrisation 

A prototype mass flux parametrisation with crude vertical resolution (Majda & Shefter 2001, 

Khouider & Majda 2006b) is utilised to illustrate the fashion in which the coarse- grained stochastic 

model for CIN can be coupled to a deterministic convective mass flux 

parametrisation. The prognostic variables (u, θ, θeb, θem) are the x-component of the fluid 
velocity, u, the potential temperature in the middle troposphere, θ, the equivalent potential 
temperatures, θeb and θem, measuring, respectively, the potential temperatures plus mois- ture content of 

the boundary layer and middle troposphere. The vertical structure is deter- mined by projection on a first 

baroclinic heating mode (Majda & Shefter 2001; Khouider & Majda, 2006b). The dynamic equations 

for these variables in the parametrisation are given by 
 
 

∂t ∂x 
∂θ ∂u 

 
  

D h 0 τD 

0 θ 
 

∂t  
− ᾱ 

∂x  
= S − QR  − 

τ
 

h
∂θeb   

= −D(θ    − θ ) + 

.

C  

.

u2 + u2

Σ 

(θ∗   − θ ) (3.9) 

H 
∂θem  

= D(θ   − θ ) − HQ0 − H 
θem

 

∂t 
eb em R τR

 

 

while the constants Q0 , θ∗  are externally imposed and represent the radiative cooling 
R eb 

at equilibrium in the upper troposphere and saturation equivalent potential temperature in the boundary 

layer. The constants h and H measure the depths of the boundary layer and the troposphere above the 

boundary layer, respectively. The typical values used here are 

h  = 500 m and H  = 16 km while u0 = 2 m s−1. The explicit values for the other 
constants used in (3.9) and elsewhere in this section can be found in (Majda & Shefter 
2001, Khouider et al. 2003). 

The crucial quantities in the prototype mass flux parametrisation are the terms S and D where S 
represents the middle troposphere heating due to deep convection while D represents the downward 

mass flux on the boundary layer. The heating term S is given by 

+  1/2 

c 

 
 

with M a fixed constant, σc the area fraction for deep convective mass flux, and CAPE = R(θeb γθ), the 

convectively available potential energy. Here R is a dimensional constant (Majda & Shefter, 2001, 

Khouider et al. 2003). The downward mass flux on the boundary 

layer, D, includes the environmental downdrafts, me, and the downward mass flux due 

eb 
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Σ  Σ
σ  (j∆x) =  1 − σ̄ 

(j∆x) σc   I 

c 

√
arise only through the nonlinearity from  u   + u   and are called the WISHE 

instability 

 

 
elsewhere (Majda & Shefter, 2001; Khouider et al. 2003). The notation (X)+ denotes the to convection, 

m−, which are non-negative quantities with explicit formulas described  positive part of X. This 

parametrisation respects conservation of vertically integrated moist 

static energy. 

The equations in (3.9), (3.10) represent an idealised GCM with crude vertical resolu- tion based on 

reasonable design principle for deep convection including basic conservation principles. However, like 

the current generation of GCM’s, the model has major deficien- cies as regards convectively coupled 

waves. First, instabilities for the full model in (3.9) 

jda & Shefter, 2001). There is no observational evidence supporting the role of WISHE in driving the 

large scale convectively coupled waves in nature (Lin et al. 2006 and references therein); here the WISHE 

term is regarded as a deterministic fix in a GCM parametrisation to generate instabilities. The simulation 

results reported below in Figure 5a show that in an aquaplanet model above the equator, two regular 

periodic convectively coupled waves, moving eastward and westward at roughly equal strength are 

generated by the idealised GCM. Since GCM’s often have convectively coupled waves that move too 

fast and are too regular (Lin et al. 2006), the goal here is to see whether the stochastic lattice coupling 

will slow down the waves in the deterministic parametrisation and simultaneously increase the spatio-

temporal fluctuations in those waves. It is important to note here that there are recent deterministic multi-

cloud models (Khouider & Majda, 2006a, 2007a, 2007b) for convec- tively coupled waves involving the 

three cloud types in observations above the boundary layer, congestus, deep, and stratiform, and their 

heating structure which reproduce key fea- tures of the observational record for convectively coupled 

waves (Lin et al. 2006). The mechanism of instability in these models (Khouider & Majda, 2006a) is 

completely differ- ent from WISHE which is not active in the multicloud models. For the idealised 

setting of flow above the equator, the multicloud models can produce packets of convectively coupled 

waves moving in one direction at 15-20 m/s with their low frequency envelopes moving at 4-7 m/s in the 

opposite direction across the warm pool in a fashion like the Madden-Julian oscillation (Khouider & 

Majda, 2007a, b). 

 
(d) Coupling of the Stochastic CIN Model into the Parametrisation 

The equations in (3.9)–(3.10) are regarded here as the prototype deterministic GCM parametrisation 

when discretized in a standard fashion utilising central differences on 

a coarse mesh ∆x with ∆x ranging from 50 km to 250 km. In the simulations from (Khouider et al. 

2003), and presented below ∆x = 80 km. The coarse-grained stochas- tic CIN model is coupled to this 

basic parametrisation. First, the area fraction for deep 

convection, σc, governing the upward mass flux strength, is allowed to vary on the coarse mesh and is 

given by 

+ 
c 

with σ̄I is the average in (3.2) 

(3.11) 

with σ+ a threshold constant, σ+ = .002 (Majda & Shefter 2001, Khouider et al. 2003). 
c c 

When the order parameter σI signifies strong CIN locally so that σ̄I  = 1, the flux of deep convection is 

diminished to zero while with PAC locally active, σ̄I  = 0, this flux increases 

 

 

 
CIN  model  into  the  parametrisation,  the  coarse  mesh  external  potential,  hext(u̇j ),  from to the 

maximum allowed by the value σ+. To complete the coupling of the stochastic (3.6), (3.7), needs to 



 

 

Juni Khyat                                                                                                                 ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                                             Vol-12 Issue-07 No.03 July 2022 

Page | 285                                                                                                  Copyright @ 2022 Author  

be specified from the coarse mesh values, u̇j . There is no unique 

choice of the external potential but its form can be dictated by simple physical reasoning. In (Khouider et 

al. 2003), the plausible physical assumption is made that when the convective downward mass flux, m−, 

decreases, the energy for CIN decreases. Since the convective downward mass flux results from the 

evaporative cooling induced by precipitation falling into dry air, it constitutes a mechanisms which 

carries negatively buoyant cool and dry air from the middle troposphere onto the boundary layer hence 

tending to reduce CAPE and deep convection. 

Another natural external potential is the boundary layer equivalent potential tempera- ture since the 

flux at the boundary is crucial physically. Thus, the choice 

hext(j∆x, t) = γ̃θeb(j∆x, t) (3.12) is utilised 

here with γ̃ a calibration factor. The other parameters in the stochastic lattice model are chosen as τI = 

2 hours, β = 1, U0 = 1 so that CIN sites are favoured in the 

equilibrium Gibbs measure. 

 
(e) The stochastic single column model and intermittency 

A central issue is how to calibrate the stochastic lattice model to generate intermittent fluctuations 

with plausible magnitudes as observed in tropical convection. A natural design framework is first to 

achieve such behaviour in the stochastic single column model given by the equations 
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Figure 3. Ratio of the adsorbtion and desorption rates Cd/Ca for the birth-death stochastic lattice model with 
parameters γ̃ = 0.1, β  = U0 = 1 and a number of microscopic sites q  = 10 (green), q = 100 (red), and q = 1000 (blue). 
Note a CIN dominating equilibrium with large CIN values yield large PAC (adsorbtion) rates. The balanced 
equilibrium curve Cd/Ca = 1 is shown. 

 
q = 10. The strongly intermittent fluctuations in θeb over several degrees Kelvin as well as similar 

intermittency in the mass flux is evident. Also note that the fluctuations in the mid- 

troposphere potential temperature are much weaker in magnitude as occurs in the actual tropics. 

 
(f ) The effects of the stochastic parametrisation on convectively coupled waves 

All parameters in the stochastic lattice model have been determined through system- atic design 

principles in the previous section. Here the results of numerical simulations  of the stochastic model in 

statistical steady state are reported for flow above the equator in a standard aquaplanet set-up with 

uniform SST (Majda & Khouider 2002; Khouider et al. 2003). The results of various simulations are 

reported in Figure 5 for comparison with the deterministic parametrisation with WISHE reported in 

Figure 5A. As shown in Figure 5B, the effect of the fluctuations of the stochastic lattice model is 

simultaneously to cre- ate more realistic intermittency in the convectively coupled waves and to slow 

down their phase speed from 15 m/s to 11 m/s; as mentioned earlier, these are desirable qualitative 

features of a stochastic parametrisation. In Figure 5C, we report the result of running the model 

parametrisation in (3.9) without WISHE but coupled to the stochastic lattice model; recall that this is the 

situation where the deterministic model without WISHE produces no waves in the statistical steady state. 

In Figure 5C, there is a clear evidence for stochas-  tic generated convectively coupled waves with the 

reduced phase speed of roughly 8 m/s and roughly half the amplitude; these waves have been created by 

coupling alone to the intermittent stochastic lattice model and without deterministic instability. This is 

another attractive feature of the present stochastic lattice models in changing the character of model error 

for convection (Palmer, 2001). 

 
4. Concluding Remarks 

This paper both reviewed and provided new illustrations and examples of the fashion     in which 

modern applied mathematics can provide new perspectives and systematic de- sign principles for 

stochastic modelling for climate. Section 2 was devoted to systematic stochastic modelling of low-

frequency variability including the quantitative sources for 
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p
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 − 

Stochastic: ICAPE a =0;  =0.1;  J0=1; initial  (bar)=0.51365;  =1 
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Figure  4.  Time  series  of  dynamical  variables  for  the  stochastic  one  column  model  with 

τI    =  2 hours, γ̃   =  0.1, β    =  U0   =  1, q    =  10.  Note  the  manifestation  of  strong  in- 

termittent bursts beyond the stochastically generated CIN; especially, in  θeb  and  mass  flux  σcWc (1  σI )  R(θeb  
γθ1). The deterministic equilibrium value is represented by the hori- zontal line on each panel. 

 

multiplicative noise. A new simplified low-dimensional stochastic model with key features of 

atmospheric low-frequency variability was introduced in 2e in order to test stochastic mode reduction 

strategies. A recent diagnostic test with firm mathematical underpinning for exploring the subtle 

departures from Gaussianity and their sources was discussed in 
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Figure 5. Effect of the birth-death stochastic CIN on large scale convectively coupled waves with the stochastic 

parameters β = U0 = 1, q = 10. (A) Purely deterministic WISHE waves without the stochastic coupling, (B) Effect of 
stochastic CIN on WISHE waves, (C) Intermittent bursts of convec- 

tive episodes with apparent tracks of waves maintained by the stochastic-CIN effects alone–WISHE is off. The 

apparent speed of propagation is shown by the dashed line on each panel. 
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2f. Section 3 was devoted to developing stochastic lattice models to capture intermittent features and 

improve the fidelity of deterministic parametrisations. Recent, systematic de- sign principles (KMS 

2006, 2007) were utilised to calibrate a stochastic column model for tropical convection in 3e; the 

practical effect of slowing down convectively coupled waves and increasing their fluctuations through 

these stochastic lattice models were presented in 3f. 
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