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Abstract 

Numerous research have been done on the efficient implementation of security and surveillance based on video 

analysis as a range of video surveillance equipment including CCTV, drones, and automobile dashboard cameras 

have grown in popularity. The most difficult task in automobile-related surveillance, in particular, is car tracking. 

Analyzing frames from many video sources independently was one early method for completing such a task. The 

results from the analysis of a single video source are extremely constrained given the shooting distance of the 

majority of video devices. A collection of video sources should be taken into consideration in order to gain more 

thorough information for automobile tacking. The pertinent data should then be combined according on the 

geographical and temporal restrictions. Due to this, we suggest in this study a real-time vehicle monitoring system 

based on surveillance footage from various devices, such as CCTV, dashboard cameras, and drones. Our system includes a 

Frame Distributor, a Feature Extractor, and an Information Manager and is built on a distributed processing foundation for 

scalability and fault tolerance. The distribution of video frames to the processing nodes from diverse devices is the 

responsibility of the frame distributor. The Feature Extractor gathers key vehicle characteristics from each frame, 

including the licence plate number, time, and position. The Information Manager gathers pertinent data from the feature 

database to respond to user queries after storing all the features in a database. We put into practise a prototype system 

and ran several experiments to demonstrate the efficacy of our suggested solution. We report some of the results. 
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1 Introduction 

With  the rapid advancement of IT technology, a number 

of video surveillance devices have entered a wide use for 

surveillance and security purposes in daily life. As a typ- 

ical example, closed-circuit television (CCTV), also 

known as video surveillance, uses video cameras to 

transmit video signals to a limited set of monitors. When 

CCTV was first introduced, its poor quality and signifi- 

cant installation costs limited its applicability. Recently,  

because of improved definition, better distribution rates, 

and various basic functions of CCTV, more diverse 

applications have become easily implemented [1, 2]. 

Another popular example is the dashboard camera, car 

DVR or car black box, that is one or a pair of onboard 

cameras that continuously record (loop recording) the 

view through the windscreen. Dashboard cameras can 

provide video evidence in the event of a road accident or 
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vandalism. For this reason, numerous cars are now 

equipped with dashboard cameras and, in a number of 

countries, dashboard cameras are mandatory on public 

transportation, such as buses and taxis. 

While CCTV and dashboard cameras play similar roles, 

there is a significant difference between them, namely 

mobility. A CCTV is typically installed for sur- veillance 

in areas that require monitoring, such as banks and 

hospitals or areas where security is required. There- fore, 

its coverage is limited. On the other hand, as a car 

dashboard camera is installed inside a car, it can record 

while the car is moving. To perform car tracking effi- 

ciently, these two types of devices should be considered 

together. In the case of CCTV, as its location is fixed 

and its hardware performance is superb, it is highly ef- 

fective for the monitoring of car movements in a 

predefined area. On the other hand, car dashboard 

cameras can cover a broad area including areas where 

CCTV is not appropriate. There could be areas not 

covered by both car dashboard cameras and CCTV. 
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Drone-mounted cameras, which have been attracting 

much attention recently, can be used effectively to cover 

such areas. 

Numerous studies have been conducted to date using 

a number of video surveillance devices for, amongst 

others, traffic condition analysis [3], people identification 

[4], and event detection [5]. As they are dealing with a 

single video source, the analysis results were limited, and 

combining the results from separate video sources would 

be both time-consuming and labor-intensive. Car track- 

ing based on surveillance videos suffers from the same 

problem. To solve this, in this study, we propose a Kafka-

based real-time car tracking system that can col- lect data 

from different video sources, extract relevant features 

from cars for monitoring, and integrate them in a 

consistent manner. Our system is designed to utilize 

various widespread devices, including CCTV and dash- 

board cameras, as the effectiveness of car tracking relies 

on diverse information, such as  plate  number,  time, 

place, and direction, collected from numerous different 

places. Fortunately, modern CCTV, drones, and dash- 

board cameras provide diverse metadata including global 

positioning system (GPS) and timestamping. In addition, 

plate number and moving direction can be easily  de- 

tected from the captured images using popular image 

processing or machine learning techniques. 

Our system can be used effectively to handle traditional 

surveillance tasks that are typically both time-consuming 

and labor-intensive. For instance, one of the typical steps 

for the police to determine the movement of a stolen ve- 

hicle is to start with the CCTV and dashboard cameras in 

the vicinity and gradually expand to a greater area. Investi- 

gating all the CCTV records and dashboard cameras 

involved would require significant amounts of human 

labor and time. In the case of our system, based on the car 

plate number, time of the crime, and place, we can easily 

formulate a query to determine the detailed track of the 

stolen car. In addition, our system can be highly effective 

for other popular applications such as traffic congestion 

analysis by region, searching for optimal driving routes, 

and planning new road construction. 

However, in spite of the outstanding properties of our 

proposed system, it is not easy to implement for a num- 

ber of reasons. Firstly, the system should have sufficient 

storage and processing capacity to handle the big data 

involved. The volume of data generated from the video 

devices in real time is significant. Therefore, the system 

should be sufficiently fast to avoid any data accumula- 

tion inside the node, otherwise, all the nodes in the sys- 

tem could experience a memory shortage and,  in  the 

worst case, the entire system might stop. To overcome 

this problem, a distributed processing platform can be 

used. Secondly, the system should have a fault tolerance 

ability that is essential for the system to provide accurate 

 

and complete car tracking information. This means that 

when a node fault or transmission  fault  occurs,  the 

system should be able to recover from the fault. Thirdly, 

precise and fast image processing methods should be 

supported to efficiently extract all the critical informa- 

tion about the cars in the frames. Finally, to answer user 

queries promptly, the system should have methods for 

managing a significant amount of data efficiently, includ- 

ing an index structure for query processing. 

In this study, based on these investigations, we 

propose a real-time car tracking system IVATS (inte- 

grated video-based automobile tracking system) that can 

collect video big data, extract and store principal vehicle 

features, and process user queries in a real-time environ- 

ment. Our proposed system comprises three  compo- 

nents: Frame Distributor (FD), Feature Extractor  (FE), 

and Information Manager (IM). The role of the FD is to 

assign a significant amount of frames from numerous 

video sources to processing nodes using Apache  Kafka 

[6]. Each node in the FE extracts principal vehicle fea- 

tures such as plate number, time, and location from the 

frame and transfers them to the IM. The IM that is built 

on HBase [7] clusters is responsible for storing all the 

extracted features, constructing index structures for 

them, and retrieving all the relevant data to answer user 

queries. 

The structure of this study is as follows. Section 2 de- 

scribes a number of related studies and background infor- 

mation. Section 3 presents the overall structure of our 

proposed system. Section 4 describes the experiments that 

were performed, and Section 5 concludes this study. 

 

2 Related works and background 

Before we describe our system in detail, we introduce 

a number of related studies. We first investigate 

methods for recognizing or tracking automobiles from 

video frames, and then, we investigate frameworks for 

real-time distributed processing,  distributed  databases, 

and index structures for HBase. 

 
2.1 Automobile recognizing and tracking 

For automobile tracking based on surveillance video, it 

is essential to extract the primary vehicle features such 

as plate number, color, and size from  a  video  frame. 

Nam et al. [8] classified the types of vehicles as, amongst 

others, SUVs, sedans, and RVs using images from visible 

light and thermal cameras. Suryatali et al. [9] reported a 

scheme for determining the direction and size of auto- 

mobiles using Kalman filters. Solanki et al. [10] proposed 

a scheme for recognizing plate numbers by locating the 

plate number, segmenting character areas, and utilizing 

optical character recognition (OCR). Tarigan et al. [11] 

proposed a similar scheme using neural networks and 

genetic algorithms. 
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As numerous diverse vehicle feature extraction 

methods have been developed, complete systems for ve- 

hicle tracking have also been proposed. In [12], Rao pro- 

posed a system that collected the frames from 

surveillance videos, recognized the license plate, and 

provided the results to the user that consequently  en- 

abled remote monitoring. Chen et al. [13] proposed  a 

video surveillance system in a cloud environment. Be- 

cause of the automatic license  plate recognition engine 

and the cloud environment, their system was  able  to 

cover wide areas and visualized the  detection  results 

using Google Maps [14]. 

 
2.2 Frameworks for real-time distributed processing 

Numerous recent approaches for real-time distributed 

processing are based on Hadoop [15] and Spark [16]. 

Hadoop [15] is a popular framework that makes it 

possible to process large data sets in a distributed envir- 

onment and a number of studies, such as [17–19], used 

Hadoop for distributed image processing. In particular, 

in [18], a Hadoop image processing interface (HIPI) [19] 

was implemented based on MapReduce to handle large 

image sets. As Hadoop processes data in batches, HIPI 

is not appropriate for real-time processing. In addition, 

the Hadoop distributed file system uses a random-access 

approach to disks, which induces an amount of delay in 

accessing the data in a file system. 

Spark [16] is another well-known framework  suitable 

for distributed processing. The data structure, known as 

a resilient distributed dataset and memory-based pro- 

cessing, makes Spark one of the fastest frameworks. 

However, it has a critical weakness with insufficient 

memory. When it encounters insufficient memory, the 

processing speed of the system decreases rapidly and 

could even result in the data in the memory being lost. 

The abovementioned disadvantages of the two popular 

frameworks could be significant stumbling blocks for 

real-time vehicle tracking. Therefore, we focus on Kafka 

[6], which is a platform developed for real-time message 

transmission. Kafka comprises three parts: Producer, 

Consumer, and Broker. Producer generates  data  and 

sends them to the Broker. In Broker, the data are classi- 

fied according to their topics and replicated  for  in- 

creased reliability. Consumer, a processing part, obtains 

the data from Broker each time it finishes tasks. 

Kafka has the following properties: it stores tempor- 

ary data in its own file system, and each Consumer 

schedules its own  task.  Saving  data  in  the  storage 

nodes enables Kafka to recover  the  data  without  data 

loss when an error occurs. Although memory-based 

structures are typically faster  than  disk-based  struc- 

tures, the speed of data access in Kafka is comparable 

to that of  memory-based  structures  because  of  effi- 

cient disk usage [20]. The second property indicates 

 

that a Kafka node need  not  wait  for  a  job  schedule 

from the cluster  master.  Therefore,  bottleneck  prob- 

lems caused by scheduling can be avoided and the 

communication between nodes can be decreased, re- 

ducing the network load. Because of these properties, 

Kafka can be a suitable framework in a real-time 

environment, and it was validated in [21]. 

 
2.3 Distributed databases and index structures 

Because of the popularity of distributed processing 

frameworks, distributed databases like Cassandra [22], 

MongoDB [23], and HBase [7] are attracting increasing 

attention for managing large volumes of data. Apache 

Cassandra [22] is an open-source distributed NoSQL 

database management system. Because of its decentra- 

lized structure, it can avoid bottlenecks caused by  a 

master node. In addition, its performance increases pro- 

portionally with the number of nodes. 

MongoDB [23] is another open-source cross-platform 

NoSQL database program. It is a categorized document- 

based database, while Cassandra and HBase are column-

based databases. Compared to other database management 

systems, it is easy to use and can process a number of 

query conditions. 

HBase [7] is an open-source, non-relational database 

based on Hadoop and Google Bigtable [24]. It ensures 

data consistency and provides fault tolerance. In 

addition, as HBase is based on Hadoop, it is easy to use 

MapReduce when implementing the various query pro- 

cessing methods. For this reason, we use HBase for data 

management. In HBase, a data tuple is called a row and 

data are managed in tables that  are  divided  into small 

row sets known as region. Therefore, MapReduce per- 

forms data processing in the unit of region. Except for 

Rowkey, which is an identifier of a row, the attributes of 

a table are not indexed. This means that HBase must 

access all stored data to answer user queries. Therefore, 

data retrieval takes significantly longer than data inser- 

tion and the query processing time increases rapidly as 

the volume of stored data increases. To overcome this 

problem, a number of studies have proposed the index 

structure, specifically for geometric information. 

A popular  index  structure  for  geometric  information 

is R-tree [25]. Wang et al. [26] proposed an R-tree-

based  indexing  scheme  for  trajectory  data  of cars in a 

distributed environment, and Du et al. [27] proposed an 

index structure with a  number  of  R-trees and Hilbert 

space-filling curves [28]. Another index structure for 

geometric information is Quad-tree [29]. Chen  et  al.  

[30]  indexed  GPS  data  using  Quad-tree and Hilbert 

space-filling curves, and Xie et al. [31] uti- lized HBase 

tables as an index based on Quad-tree. In this study, we 

optimized the index structure in [30] to obtain improved 

performance. 
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3 Methods 

In this chapter, we describe the overall structure of our 

IVATS for real-time car tracking in detail. The system 

comprises three parts: FD, FE, and IM. The FD is re- 

sponsible for reliable distribution of the video frames 

from a number of devices to the processing nodes, FE 

extracts diverse vehicle features such as plate number, 

time, and location from each frame, and IM stores all 

the extracted feature data, processes user queries by col- 

lecting relevant information from the feature database, 

and presents the query results to the user. Figure 1 

shows the structure of our system. 

 
3.1 Frame distributor 

For effective car tracking, we utilize multiple video 

sources including CCTV, drone-mounted cameras, and 

car dashboard cameras. The role of FD is transferring 

frames from diverse video sources to FE for feature 

extraction. One critical task of this module for accurate 

car tracking is reliable data transfer. As frames are gen- 

erated from diverse video devices in real time, the data 

volume is significant and reliable data transfer is not 

trivial [32]. In addition, the frames must be processed 

rapidly, or the entire system could stop because of buffer 

overflow. To prevent this, we use a Kafka cluster for 

frame distribution and storage. 

Stream Manager (SM) in  FD  divides  the  data  from 

the stream channels  into  frames  and  transmits  them 

to the Kafka cluster.  The  stream  channels can  be 

directly connected to a  video  device  or  receive  data 

from a remote video device using a real-time protocol, 

such as the real-time streaming protocol. SM is re- 

sponsible for either one stream channel  or  multiple 

stream channels, depending on its capacity.   Each 

frame has three RGB (red, green, and blue)  color 

channels, and SM  transforms  the  frame  into  a  byte 

array by serialization. The serialized byte array will be 

restored to its original form in  FE  for  image  process- 

ing. Therefore, SM must provide the metadata, includ- 

ing the width, height, and the number of color 

channels, to the FE node through the Kafka cluster. 

However, sending this information each time   can 

result in a significant overhead. To reduce  this  over- 

head, the frame metadata for reconstructing  frames  is 

only sent once when  the  connection  between  SM  and 

the Kafka cluster is created, and  the  Kafka  cluster 

records this information for the FE. Frame-related 

metadata such as GPS data and time are sent in a byte 

array. As we are unable to get the exact data of the 

captured automobile, the  GPS  data  and  time  refer  to 

the location and time of  capture of  the  video  devices, 

and not the automobile. For instance, the GPS data in 

 
 

 
Fig. 1 Overall structure of IVATS 
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the CCTV video is not identical to the vehicle data in 

the video. However, this difference is not a significant 

problem for car tracking in an actual environment. 

Figure 2 shows the transmission steps between SM 

and a node in a Kafka cluster. As soon as a connection 

is made between SM and a node, SM sends the metadata 

needed for image reconstruction and starts to send 

frames by converting each frame into a serialized byte 

array, bytearrayt in the figure, at time t. bytearrayt con- 

sists of RGB and I, which are the byte arrays of three 

color channels and the metadata respectively. bytearrayt 

at a Kafka node will be sent to a node in the next step 

when the node requires the data. 

While the FD is responsible for preparing frames to send 

and distributing them, the Kafka cluster actually connects 

the stream channels to the FE. The Kafka clus- ter 

receives a byte array from SM and forwards it to the FE. 

The frame then becomes located in a Kafka topic, which 

is a message queue in Kafka. The FE nodes take a frame 

from Kafka topics each time they finish a task. 

 

As discussed above, Kafka is superior to other frame- 

works such as Hadoop and Spark  in  a  number  of 

aspects. Firstly, the nodes in a Kafka  cluster  store  the 

data in their local file system. Therefore, the data being 

transmitted in the Kafka cluster are  always  protected 

from data loss, even when a fault occurs. In addition, be- 

cause of this property, Kafka can play a role as a data 

buffer and restore the original data  without  any  loss 

when a node is at a  standstill. The data  can be deleted 

only when the data duration exceeds some predefined 

threshold. Secondly, similar to other frameworks, the 

Kafka Cluster also adopts replication for the situation 

when a number of nodes stop abruptly. These two props- 

erties give Kafka high availability. Thirdly, Kafka nodes 

can schedule their own tasks. Because of this, Kafka does 

not experience the overhead problems that occur when the 

master node must schedule all the slave nodes. Fourthly, 

Kafka nodes can be operated asynchronously. 

Synchronous operations are typically safe from errors 

caused by an incorrect processing order, although they 

 

 
Fig. 2 Transmission steps between Stream Manager and a node in a Kafka cluster 
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are slower than asynchronous operations. However, 

Kafka supports asynchronous operations without errors 

and can accommodate data rapidly. Finally, an FE node 

takes the frames to process as soon as it finishes  its 

current task. This policy frees Kafka from having to 

monitor the task of nodes for job scheduling. 

 
3.2 Frame extractor 

Frame Extractor extracts diverse features for car tracking 

from the frames in the Kafka  cluster  nodes  through 

image and metadata processing. FE nodes obtain a frame 

from the FD whenever they complete their current task. 

When an FE node is finished with a frame, the extracted 

features are stored in IM  together  with  the  GPS  data 

and timestamp that were sent with the frame. Although 

for simplicity, the plate number is used as the only fea- 

ture of the  vehicle in this study; additional features such 

as color, vehicle type, and moving direction can be used 

for more versatile car tracking. 

The FE node receives frames in the form of both byte 

arrays and their metadata for restoration such as width, 

height, and the number of color channels. Based on this 

metadata, the node transforms the byte arrays into im- 

ages and then performs feature  extraction.  Figure  3 

shows the approximate steps for extracting car features. 

The first step in feature extraction  is  the  removal  of 

noise in the frame by transforming the image from RGB 

scale to grayscale, followed by Gaussian blurring.  We 

then choose the region of  interest  (ROI)  that  contains 

the plate number of a vehicle. To do that, the grayscale 

 

image is converted into a binary image using Otsu’s 

method [33] that reduces a grayscale image into a binary 

image, considering that the intra-class variance of two 

classes, white and black, should be minimal. When an 

optimal threshold is found, the frame is converted into a 

binary image using this threshold. For the binary image, 

we apply the top-hat filter that is one of the morphology 

operations. After that, we calculate candidate ROI re- 

gions by using templates. Based on various license plate 

templates, we search which region in the image contains 

a license plate. The selected regions become ROI. Now, 

we are ready to identify characters in the license plate 

region. Based on the identification, we can confirm that  

the region is a license plate. 

To identify characters, pixels in the region of a license 

plate should be split into a number of areas that could 

possibly indicate single characters. However, the size of 

the ROI could be different  depending  on  the  distance 

and angle between the video device and the license plate.  

We use the affine transformation to solve this problem. 

This is a mapping function between two affine  spaces 

with points, straight  lines, and planes  retained. Because 

of its property that maintains ratios of distances between 

points lying on a straight line, it can make ROIs have 

similar sizes and reduce the distortion introduced during 

the transformation of an image. 

The next step for the plate number identification is to 

divide ROIs into character regions by  projecting  the 

pixels in each  ROI onto a horizontal axis  and counting 

the foreground pixels in the axis. Based on this, we can 
 

 
Fig. 3 Steps for identifying license plate 
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Table 1 Sample HBase table schema 
 

 

ColumnFamily 
 

 

Rowkey Latitude Longitude 
 

11 1111_1488960532177 37.58268 127.02621 

11 1111_1488960532183 37.58274 127.02672 

11 1111_1488960532199 37.58307 127.02813 

 
construct a pixel histogram and use it to find character 

regions. If an interval has any pixels, this interval is con- 

sidered as a character region; otherwise, the interval is 

deemed as a space between  two  adjacent  characters. 

After all, if a ROI has the required number of character 

regions, it really corresponds to a license plate. The 

character in each character region can be read using 

Tesseract-OCR [34], an open-source OCR library. 

 
3.3 Information manager 

All the vehicle information including the license plate 

number, GPS data, and timestamp should be stored and 

processed efficiently to support diverse applications and 

user requests. For this, we use HBase, an open-source, 

non-relational database based on Hadoop and Google 

Bigtable. An index  structure is required for the spatial 

data as spatial data should be  continually  retrieved  for 

car tracking. 

Table 1 presents a sample table schema for storing li- 

cense plate number, time, and GPS data. We make the 

 

Rowkey of the table by combining the plate number and 

the time when the frame was captured and the other at- 

tributes are tied to one ColumnFamily that is a set of 

attributes in HBase. If additional attributes need to be 

stored, they will be contained in ColumnFamily in the 

current table, resulting in ColumnFamily extension. This 

enables HBase to simply append new rows instead of up- 

dating the previous row. The advantage of this is  that 

there  is no  update  overhead that is  typically introduced 

in version management. In addition, searching for a spe- 

cific  vehicle data becomes considerably quicker as the 

data of an identical vehicle converges. In addition, con- 

sidering that Rowkey is saved in each attribute,  there  is 

no requirement to create attribute columns for plate 

number and time and storage space could be decreased. 

However, HBase cannot process queries with attributes 

other than Rowkey. Fortunately, this restriction can be 

overcome by using an index structure. Specifically, as 

latitude and longitude are two primary attributes in our 

system for representing  geographical  information,  we 

can construct an index structure for the two attributes. 

We revised the method in [30] to meet  our  require- 

ments. The index structure comprises two parts: R-tree 

[25] and Hilbert space-filling curve [28]. 

R-tree is one of the most popular data structures for 

spatial data  indexing  and  has  a  number  of  versions 

[26, 27, 35–37]. The basis of R-tree  is  a  rectangle 

binding a number of data points and minimizing its 

 
 

 
Fig. 4 The second order Hilbert space-filling curve 
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boundaries that is known as the minimum bounding 

rectangle. The  significant  attribute  of  R-tree  is  that  it 

is a height-balanced structure and provides stable per- 

formance regardless of data location. The greater the 

volume of data stored, the greater the  height  of  the R-

tree, and the longer the query response time becomes. 

To solve  this  problem,  we  spread  R-tree using a 

space-filling curve. 

A space-filling curve is a curve whose range contains 

the entire two-dimensional (2D) square. It is used to 

convert 2D data into one-dimensional (1D) data. The 

Hilbert space-filling curve, which is a fractal space-fill- 

ing curve, exhibits the best performance in preserving 

locality [38, 39]. Because of this property, we use Hil- 

bert space-filling curves in this study to map the 

spatial data (X, Y) to a  1D  point.  The  total  length  of 

the Hilbert space-filling curve varies according to  its 

order. As an example, Fig. 4 shows a  second  order 

Hilbert space-filling curve. The range of  X  and  Y  is 

from 0 to 3, respectively,  in  this  case.  The  value  in 

each rectangle is the value of the Hilbert curve corre- 

sponding to X and Y and the red  line  indicates  the 

Hilbert curve line. In this curve, (3, 2) is converted to 

(1011) and other points, (0, 0), (3, 3), and (3, 1) are 

converted to (0000), (1010), and (1100), respectively. 

Figure 5 shows the overall index structure  for  GPS 

data. Each node in HBase has an IndexManager that 

manages the index of all regions in the node. The 

 

IndexManager uses the two methods; Hilbert space-fill- 

ing curve and R-tree. A Hilbert  space-filling  curve 

divides all possible spaces. Figure 5 shows a Hilbert 

space-filling curve of order 2. However, in the real appli- 

cation, Hilbert space-filling curve of order 7 is used  to 

map actual GPS data. As the Hilbert space-filling curve 

does not use floating-point values, GPS data (latitude, 

longitude) should be converted into integer values. We 

divide all possible regions expressed by (latitude, longi- 

tude) to fit the Hilbert space-filling curve and map the 

regions into the areas in the curve. Thus, GPS data are 

allocated to some integer values of the curve and we use 

these values. Each independent area then has one R-tree 

whose nodes have latitude, longitude, and  the  name  of 

the address where the data are stored. 

In order to decrease the overhead of index updates be- 

cause of the data insertion, we perform  index  updates 

only when HBase flushes all the data in the  memory  to 

the disk. Such flushing occurs just before the amount of 

data exceeds the memory capacity. This lazy update does 

not affect the performance significantly as the inserted 

data exists in the memory and data searching remains 

rapid, even if they are not indexed. 

We now describe the detailed steps for  processing 

spatial queries using a simple example. When   a 

spatial query covering  from  (2,  2)  to  (3,  3)  is  given, 

its spatial  condition  is  transformed  into  the  range  of 

a Hilbert space-filling curve from (1000) to (1011). 

 

 
Fig. 5 Index structure 
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This range is indicated as a green rectangle in  Fig. 5. 

Then, we investigate each region  whether  an  R-tree 

exists in the  area  contained  in  the  range.  For  in- 

stance, in Fig. 5,  the  IndexManager  in  the  figure  has 

the index  of  two  regions.  Region  1  has  R-trees  in 

areas (1010) and (1100), and region 2  has  R-trees  in 

areas (0001) and (1001). Considering  the  query  range, 

we can find that region 1 has an R-tree in (1010) and 

region 2 has an R-tree in (1001). If the area has an R-

tree, the index structure retrieves the data address 

that is appropriate for the spatial condition. Accord- 

ingly, region 1 starts to search the R-tree in (1010) 

and collects the data addresses, and region 2 does the 

same for (1001). After all data addresses are collected 

through the R-tree searches, HBase records them as a 

result for users. For the complete query result, the 

 

 
Fig. 7 An example of vehicle tracking result 

Fig. 6 Examples of feature extraction 
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data in  the memory should be  checked because of the 

lazy update policy of our index structure. Therefore, 

spatial query results comprise data addresses   from 

both the index and memory searches. For effective 

browsing of query results, they can be connected by 

means of a number of visualization tools. 

 

4 Results and discussion 

To demonstrate the performance of our proposed system, 

we performed a number of experiments. We also show 

how a number of typical car tracking queries are 

performed together with the query results. In the experi- 

ment, the FD was not considered as it was  already 

reported in [40] that Kafka can be used as a satisfactory 

distributed-processing framework. 

We consider the following three experiments: (1) 

extracting vehicle features, (2) visualizing query results, 

and (3) indexing spatial data. The experiments were per- 

formed on an Intel® Core™ i7-7700 with a 3.6 GHz proces- 

sor and 32 GB RAM, using virtual machines running 

Ubuntu 16.04. In addition, we used Hadoop version 2.7.3 

and HBase version 1.2.4. The number of nodes in the 

HBase cluster was five, of which one was the master and 

four were slave nodes. The data used in the experiments 

 

were virtually generated except for the data for the first 

experiment. Virtual data was used instead of actual data 

because the actual data available was insufficient for the 

needs of the tests. The virtual data generated for the ex- 

periments were 16 million tuples in the HBase table. 

 
4.1 Vehicle feature extraction 

Vehicle features of interest are extracted from frames by 

the FE node. Figure 6 shows two video frames from a 

car dashboard camera and  their  extracted  features.  In 

the features, the plate number is the outcome of the FE 

node and time, latitude, and longitude are transferred from 

the FD node with the frame. Even though we use the 

license plate number as a visual feature of a vehicle for 

simplicity in this work, it is easily extended to cover other 

visual features such as color, type of car, and direc- tion. 

The plate number in Fig.  6  is  the  candidate  that has the 

greatest confidence among the extracted plate numbers. In 

a typical situation, the plate number of the vehicle 

immediately in front of the camera has the high- est 

confidence. When the plate numbers of other  vehi- cles 

in the same frame are detected depending on  the angle and 

distance, they can also be used for more com- prehensive 

car tracking. Lastly, all the collected features 

 

 
Fig. 8 An example of traffic evaluation in a specific region 
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through FD and FE nodes are sent to IM for storing into 

the database. 

 
4.2 Visualization 

In the car tracking application, visualization could be an 

effective way for users to easily understand the query 

results. For this reason, we incorporated simple 

visualization functions in our system. Using these func- 

tions, the trajectory of a specific vehicle can be seen by 

using the data in IVATS, and the other vehicles can be 

seen sequentially. The trajectory of a vehicle is displayed 

on the map using Google Maps API [14]. 

For example, given a plate number and possibly tem- 

poral or spatial condition, the system visualizes all the 

records that satisfy the query condition  in  both  the 

spatial and temporal order. Figure 7 shows the result of 

tracking a particular vehicle. The result consists of two 

parts. The top part of the result shows the summary of 

the requested query and the query  result  including the 

first and last locations of the vehicle captured by IVATS 

and the number of times the vehicle was  seen.  The 

bottom part shows the trajectory of the vehicle  on the 

map. Black markers on the map indicate the locations 

where the vehicle was captured. In particular, the first 

and last locations of the tracking are marked in blue and 

 

red, respectively. The red line connects all the locations 

where the vehicle moved along. In fact, the line repre- 

sents the trajectory of the vehicle. The pop-up window 

shows the location and time information of the selected 

marker so that users can browse the trace of the vehicle. 

Our proposed system can handle his kind of user query 

easily considering our policy for constructing and stor- 

ing Rowkey for table tuples. 

Even when  the  user  query  has  a  particular  time 

range or a  specific  area  of  a  rectangle  expressed  by 

two points, our  system  can  easily  give  an  answer  to 

the query. This type of query is highly effective for 

measuring the traffic congestion in  a  specific  area. 

Figure 8 shows an example. In the figure, the top part 

shows the user query, which contains  the  time  range, 

area of interest, and the  number  of  vehicles  detected. 

The bottom part shows a map where the given  query 

range is represented  by  a  red  box  and  the  query  re- 

sult is shown on the pop-up window.   To   process 

such queries accurately, matched tuples should be 

sorted by the  plate  numbers  as  a vehicle  could  appear 

in numerous frames from different video sources. For 

instance, if a  vehicle  A  was  captured  by  vehicles  B 

and C in rapid  succession,  there  would  be  duplicate 

data in the query result. 

 

 
Fig. 9 An example of congestion checking in a spacious region 
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This type of query can be used to calculate the traffic 

congestion in a more spacious region at a specific time. 

Figure 9 shows such an example. Our system divides the 

given query area into grids and calculates the traffic con- 

gestion for each grid. The top part of the figure shows 

the query condition. In addition, the bottom part indi- 

cates how much the region in the grid is congested at 

the given time by using different colors. The green grid 

means that the number of the captured records in this 

region is under the average of the number of those in 

the query range, while the red grid means the opposite. 

This function can be used to find out a faster way to a 

destination or plan the construction of a new road. 

 
4.3 Index efficiency 

In the experiment, we evaluate the effect of our index 

structure by comparing the query response time when 

indexing is both used and not used for  a  user  query 

whose range contains a portion of the entire data. We 

repeated this ten times. Figure 10 shows the query re- 

sponse times according to the query selectivity. The 

response times in the figure are the average of all re- 

sponse times for the queries. The query selectivity in- 

dicates the  ratio  of  the  query  result  to  the  total  data. 

In the experiment, the query selectivity was set to 1%, 

0.1%, 0.01%, and 0% (no relevant data). It can be seen 

in the figure that  the  response  time  when  using  an 

index structure differs depending on the query  select- 

ivity. On the contrary, the  response  times  when  not 

using an index structure are approximately identical 

regardless of the query selectivity. Overall, query pro- 

cessing can be  achieved  faster  when  using  indexing. 

The difference in the response time between the two 

systems was the greatest when  no  data  were  in  the 

query range, at which point the response time was ap- 

proximately 300 times faster. 

5 Conclusions 

In this study, we proposed an integrated vehicle tracking 

system, IVATS, based on Kafka and HBase. Our system 

could assign a significant number of frames from diverse 

video sources, such as CCTV and car  dashboard cam- 

eras, to processing nodes using Apache Kafka. Primary 

vehicle features such as plate number, time, and location 

data were extracted accurately from the frames using 

image and metadata processing. The feature data were 

stored in HBase clusters and retrieved for query process- 

ing. For effective query processing, we proposed an 

indexing structure based on R-Tree. 

In the experiments, we demonstrated that  our system 

can handle diverse user  queries, including car  tracking 

and traffic congestion, efficiently. Based on the data dis- 

tribution, storage structure, Rowkey design, and indexing 

structure, our system can effectively handle real-time 

requirements of car tracking applications. 

Fig. 10 Query response time depending on query selectivity 
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