
Juni Khyat                                                                                                                 ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                                             Vol-12 Issue-07 No.03 July 2022 

Page | 386                                                                                                    Copyright @ 2022 Author 

Some Recent Developments on Higher Transcendental Functions of Analytic Number Theory in Applied   

Mathematics: A Survey 

 

Krishna Vegad 1, Rojalini Dash 2, Satyaprangya Swain 3, Sulochana Parida 4, CHETAN KUMAR SHARMA5 
1, 2, 3, 4 Gandhi Institute for Education & Technology, Baniatangi, Khordha, Odisha 

5NM Institute of Engineering & Technology,Bhubaneswar,Odisha 

krishnavegad@giet.edu.in,  rojalinidash@giet.edu.in,  satyaprangyaswain@giet.edu.in, sulochanaparida@giet.edu.in 

 

 

Abstract: Often referred to as special functions or mathematical functions, the origin of many members of the remarkably vast family of higher 

transcendental functions can be traced back to such widespread areas as (for example) mathematical physics, analytic number theory and applied 

mathematical sciences. Here, in this survey-cum-expository review article, we aim at presenting a brief introductory overview and survey of 

some of the recent developments in the theory of several extensively studied higher transcendental functions and their potential applications. For 

further reading and researching by those who are interested in pursuing this subject, we have chosen to provide references to various useful 

monographs and textbooks on the theory and applications of higher transcendental functions. Some operators of fractional calculus, which are 

associated with higher transcendental functions, together with their applications, have also been considered. Many of the higher transcendental 

functions, especially those of the hypergeometric type, which we have investigated in this survey-cum-expository review article, are known to 

display a kind of symmetry in the sense that they remain invariant when the order of the numerator parameters or when the order of the 

denominator parameters is arbitrarily changed. 
 

Keywords: gamma; digamma and polygamma functions; hypergeometric functions and their gener- alizations and multivariate extensions; 

Riemann and Hurwitz (or generalized) Zeta functions; Lerch’s transcendent and the Hurwitz-Lerch Zeta function; Mittag-Leffler type functions; 

Fox-Wright hyper- geometric function; Riemann-Liouville and related fractional derivative operators; Liouville-Caputo fractional derivative 

operator; Fox-Wright hypergeometric function; generalized Fox-Wright function; operators of fractional calculus; quantum or basic (or q-) analysis; 

fractional-order quantum or basic (or q-) analysis 

 
 

1. Introduction and Motivation 

Throughout this survey-cum-expository review article, we use the following standard 
notations: 

N := {1, 2, 3, · · · }, N0 := {0, 1, 2, 3, · · · } = N ∪ {0} 
and 

Z− := {−1, −2, −3, · · · } = Z0
− \ {0}. 

Additionally, as usual, Z denotes the set of integers, R denotes the set of real numbers 

and C denotes the set of complex numbers. 
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By far the most useful and the most fundamental special function of mathematical analysis and 
applied mathematics happens to be the familiar (Euler’s) Gamma function 

Γ(z). Essentially, it stemmed from an attempt by Leonhard Euler to render  a meaning to 
x! when x is any positive real number. In the year 1729, Euler undertook the problem of 

the (Euler’s) Gamma function Γ(z) which is defined, for z ∈  C \ Z0
−, by          interpolating n! 

between the positive integer values of n. It led to what is widely known as 

Γ(z) =  

∫ ∞ 

e−t tz−1 dt 
.
R(z) > 0

Σ
 

Γ(z + n) 
 

 

 (1) 

n 1 
∏ z + j) 

 

 

.
z ∈  C \ Z0

−;  n ∈  N
Σ
. 

  
j 

( 

Historically, of course, the origin of the Gamma function Γ(z) defined by (1) can 
be traced back to two letters from Leonhard Euler (1707–1783) to Christian Goldbach 
(1690–1764), elaborating upon a simple desire to extend factorials to values between the integers. 
It is regrettable to see that, in several recent amateurish-type publications, some authors have 
trivially changed the variable t of integration in the integral definition in (1) and have thereby 
claimed to have produced a “generalization” of this classical Gamma 

function Γ(z) (see, for details, [1], Section 3, pp. 1505–1506). 
Among the numerous special functions, which are related rather closely to the Gamma 

function, we choose to mention the incomplete Gamma functions, the Beta and the incom- plete 
Beta functions, the Error functions and the Probability integral, the Digamma and Polygamma 
functions, and so on. 

Our main objective, in this survey-cum-expository review article, is to present a brief 
introductory overview and survey of some of the recent developments in the theory of a large 
variety of extensively-studied higher transcendental functions and their potential ap- plications. The 
detailed plan of this review is as follows. In the next section (Section2) , we present a discussion of 
the hypergeometric type functions and their multivariate extensions and generalizations. In 
Section3, we describe the Polygamma and related functions of analytic number theory. Section4is 
concerned with the Mittag-Leffler type functions and their applications to the modeling and 
analysis of applied problems by means of fractional calculus are presented in Section5. Finally, in 
the concluding section (Section6), we present a number of further remarks and observations. 

We remark in passing that we have made this review article as much complete, 
comprehensive and self-contained as possible. Of course, wherever applicable, we have chosen to 
clearly and fully give due credits to the authors of the earlier publications and also included them 
in the list of references. This has, naturally, resulted in some necessary overlaps with earlier, but 
clearly and explicitly cited, publications. 

 

2. The Hypergeometric Functions and Their Extensions and 
Multivariate Generalizations 

We begin this section by recalling the following second-order homogeneous linear ordinary 
differential equation (popularly known as the Gauss hypergeometric equation): 

z 
d2w dw 

(1 − z) 
dz2  

+ [c − (a + b + 1) z] 
dz 

− abw = 0, (2) 
with three singularities at z = 0, 1, ∞, each of which is a regular singular point of (2). In fact, it happens to be the most celebrated differential equation of the Fuchsian class consisting 
of differential equations whose only singularities (including the point at ∞) are regular singular 
points. The importance of the differential Equation (2) arises from the following known 
observation in the theory of differential equations. 

=0 
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given by 

 
 

Every homogeneous linear differential equation of the second order, whose singulari- 
ties (including the point at infinity) are regular and at most three in number, can be 
transformed into the hypergeometric Equation (2). 

 
borhood of the origin (z = 0), can be expressed in terms of the Gauss hypergeometric  The general solution of the hypergeometric Equation (2), which is valid in a neigh- function 2 F1, which is named after the famous German mathematician, Carl Friedrich 

for it. In terms of the general Pochhammer symbol or the shifted factorial (λ)ν, since            Gauss (1777–1855), who introduced this function in the year 1812 and gave the F-notation 

(1)n = n! (n ∈  N0), 

which is defined (for λ, ν ∈  C), in terms of the Gamma function in (1), by 

(λ)ν := 

Γ(λ + ν) 

Γ(λ) 

= 

 

1 (ν = 0; λ ∈  C \ {0}) 

λ(λ + 1) · · · (λ + n − 1) (ν = n ∈  N; λ ∈  C), 

 
(3) 

it being understood conventionally that (0)0 := 1 and assumed tacitly that the Γ-quotient 

exists, the Gauss hypergeometric function 2 F1 is defined by 

 
2 F1(a, b; c; z) := 1 +

 ab  
z + 

a(a + 1)b(b + 1) 
z2 + · · · 

1 · c 
∞ (a)n (b)n 

1 · 2 · c(c + 1) 

zn 
−

 
 

 

= ∑ 
n=0 

(c) n 
n! 

(a, b ∈  C; c ∈  C \ Z0 ) (4) 

or by its analytic continuation for all z C [1, ∞). The function 2 F1 does indeed 

neighborhood          of           the           singular           point           z           =         0. provide the 

fundamental solution of the hypergeometric differential Equation (2) in the 

In the general case, which is usually credited to Bishop Ernest William Barnes (1874-1953) 

of the Church of England in Birmingham, who used the notation p Fq (p, q N0) analo- rameters α j 

∈  C  (j = 1, · · · , p) and q denominator parameters β j ∈  C \ Z0
− (j = 1, · · · , q), gously in the year 

1907 for a generalized hypergeometric function, with p numerator pa- 

 
p Fq 

 
α1, · · · , 

αp; 

β1, · · · , βq; 

z

 

 
∞ 

:= ∑ 
n=0 

(α1)n · · · (αp)n zn
 

(β1)n · · · (βq)n n! 

 
 

in which the infinite series 

=:  p Fq

.
α1, · · · , αp; β1, · · · , βq; z

Σ
, (5) 

(i) converges absolutely for |z| < ∞ if p ≤ q, 

(ii) converges absolutely for |z| < 1 if p = q + 1, and 

(iii) diverges for all z (z ƒ= 0) if p > q + 1. 

Furthermore, if we set 
q p 

ω := ∑ βj − ∑ αj, 

j=1 j=1 

then it is known that the generalized hypergeometric p Fq series in (5) (with p = q + 1) is 

I.absolutely convergent for |z| = 1 if R(ω) > 0, 

II. conditionally convergent for |z| = 1 (z ƒ= 1) if −1 < R(ω) ≤ 0, and 

III. divergent for |z| = 1 if R(ω) ≤ −1. 

Remarkably, from the definition (5) of the generalized hypergeometric function p Fq, it 

is clearly seen that the sets of the p numerator parameters a1, · · · , ap and the q denominator 
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{S } ∈  

{S } ∈  

 
 

parameters b1,  , bq, are symmetric individually. Such potentially useful facts apply equally well 
to some of the further generalizations and extensions of the generalized hypergeometric function p 
Fq, which is defined above by (5). 

In the particular case when p 1 = q = 2, the function 3 F2 is known as the Clausen 
hypergeometric function in honor of the Danish mathematician and astronomer, Thomas 

Clausen (1801–1885) who, in the year 1828, established the following hypergeometric identity: 

  
a, b; 

2

 

 

2a, a + b, 2b;  

 2 F1
 

a + b + 1 ; 

z

 
= 3 

F2  

a + b + 1 , 2(a + b); 

z . (6) 

For a, b, c, z R, the positivity of the function 3 F2 on the right-hand side of Clausen’s identity 

(6) was instrumental in de Branges’ proof of the 68-year-old Bieberbach conjec- ture that 

|an| ≤ n (n ∈  N \ {1}) 
for functions f in the normalized analytic and univalent function class S given by 

S := 
∞ 

f : f , f (z) = z + ∑ an zn 

n=0 

(z ∈  U) and f is univalent in U

Σ

, 

where denotes the class of normalized functions which are univalent in the open unit disk U (see, 

for details, [2]). 

Remarkably, all of such widely used special functions of mathematical physics and 

applied mathematics as (for example) the Bessel, Legendre and Lommel functions, Whit- taker 

functions, Elliptic integrals, and so on, are expressible in terms of the generalized hypergeometric 

function p Fq. Moreover, the Jacobi, Laguerre, Hermite and other as- sociated orthogonal and 

non-orthogonal polynomials (such as, for example, the Bessel 

polynomials) are essentially hypergeometric functions p Fq (p, q ∈  N0) in which one or more of 

the numerator parameters αj (j = 1, · · · , p) is a negative integer. In particular, the special 

orthogonal polynomials n(x) n N0 
, which are related rather closely to the Bessel polynomials as 

well as the Laguerre polynomials, occurred in the investigation  of 

energy spectral functions for a certain family of isotropic turbulence fields (see, for de- tails, [3] 

and the references cited therein). Quite recently in  [4], a modified form of  these 

special orthogonal polynomials n(x) n N0 
has provided a novel set of (orthogonal) basis 

functions along with some suitable collocation points in a certain matrix technique for 
computationally treating a class of multi-order fractional pantograph differential equations by using 
matrix techniques. Thus, clearly, the potential for the usefulness of the generalized 

hypergeometric function   p Fq   (p, q N0) and its considerably wide variety of special 
cases cannot be overemphasized. Some of the books, monographs and tables along these 
lines include those by Abramowitz and Stegun [5], Andrews [6], Andrews et al. [7], Carl- son [8], 
(Erdélyi et al. [9], Volumes I and II), Rainville [10], Lebedev [11], Luke (see [12,13]), Magnus et 
al. [14], Miller [15], Srivastava et al. (see [16,17]), Temme  [18],  Szegö [19],  and others. 

Various extensions and multivariate generalizations of hypergeometric functions have stemmed 
from, and are somewhat motivated by, the potential for their applications in solu- tions of systems of 
partial differential equations. Some of the multivariate generalizations of hypergeometric functions 
include the two-variable Appell and Kampé de Fériet functions and the Lauricella functions in 
several variables, the Srivastava-Daoust hypergeometric functions in two and more variables, and 
so on. For the theory and applications of many of these univariate and multivariate 
hypergeometric functions, the interested reader is referred to the monographs by (for example) 
Appell and Kampé de Fériet [20], Bailey [21], (Erdélyi et al. [9], Vol. I), Slater [22], Seaborn [23], 
Srivastava et al. (see, for details, [16]), and other authors. In particular, for the theory and 
applications of the substantially more general G and H functions in one, two and more variables, 
the reader is referred to the 

. 
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monographs by Mathai et al. [24] and Srivastava et al. (see [17,25]), and others. It should be 
remarked in passing that a nontrivial and non-vacuous generalization of the H-function was 
encountered in a systematic study of a class of Feynman integrals, the H-function was introduced 
and investigated rather widely and extensively (see, for details, [26–30]). 

We choose to conclude this section by recalling the following notable remark which was 
once made by Gian-Carlo Rota (1932–1999): 

The families of univariate and multivariate hypergeometric functions are capable of 
encompassing just about everything in sight. 

3. The Polygamma and Related Functions of Analytic Function Theory 

The Polygamma functions ψ(n)(z) (n ∈  N0) are defined by 

(n) dn+1 dn 
−

 
 

  

ψ (z) := 
dzn+1 

{log Γ(z)} = 
dzn 

{ψ(z)} (n ∈  N0; z ∈  C \ Z0 ), (7) 

of which ψ(0)(z) = ψ(z) is called the Digamma function. In terms of the Hurwitz (or generalized) 

Zeta function ζ(s, a), which is defined by 

∞ 1 

ζ(s, a) = ∑ 
(k + a)s 

.
R(s) > 1;  a ∈  C \ Z0

− 
Σ 

(8) 

pole     at     s     =    1     with     the      residue      1,      it      is      easily      seen      that and by 

its meromorphic continuation to the whole complex s-plane except for a simple 

ψ(n) (z) = (−1) n+1 ∞ 

n! ∑ 
k=0 

1 

(k + z)n+1 
= (−1) 

n+1 n! ζ(n + 1, z) (9) 

(n ∈  N;  z ∈  C \ Z0
− ), 

which may be used to deduce the properties of the Polygamma functions ψ(n)(z) (n N) from those 

of the Hurwitz (or generalized) Zeta function ζ(s, z) (s = n + 1; n N). The special case of the 

Hurwitz (or generalized) Zeta function ζ(s, z) when z = 1 is the familiar Riemann Zeta function 
ζ(s), which is involved in the following Taylor-Maclaurin series expansion of log Γ(1 + z) about 

the origin z = 0: 
log Γ(1 + z 

∞ 

z 1 n n 
zn 

 
 

 

z 1 , (10) 

) = −γ + ∑( 

n=2 

) ζ( ) 
n 

(| | < ) 

where γ denotes the Euler-Mascheroni constant. The Riemann Zeta function ζ(s) is defined by 

ζ(s) := 

 

∞ 

∑ 
n=1 

1   1  

ns   
= 

1 − 2−s 

∞ 

∑ 
n=1 

  1  

(2n − 1)s 

.
R(s) > 1

Σ
 
 
 

(11) 

  1 ∞ 

∑ 

(−1)n−1 
 

 

. 
s 0; s 1

Σ
 

 
1 − 21−s 

n=1 ns 
R( ) > ƒ= 

pole            at            s             =          1             with             the             residue             1. and by 

its meromorphic continuation to the whole complex s-plane except for a simple 

Just as in its obvious special cases  ζ(s) and  ζ(s, a), the general Hurwitz-Lerch  Zeta 
function Φ(z, s, a) defined by 

Φ 
∞ zn 

 

(z, s, a) := ∑ 
(n + a)s 

(12) 

.
a ∈  C \ Z0

−;  s ∈  C    when |z| < 1;  R(s) > 1    when |z| = 1
Σ
, 

− 
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at s = 1 with the residue 1. In fact, the general Hurwitz-Lerch Zeta function Φ(z, s, a)  can be 

continued meromorphically to the whole complex s-plane except for a simple pole defined by (12) 

contains, as its special cases, not only the Riemann Zeta function ζ(s) and the Hurwitz (or 

generalized) Zeta function ζ(s, a) and the Lerch Zeta function As(ξ) defined by 
∞ 

As(ξ) := ∑ 
n=1 

e2nπiξ 

ns 
= e 

 

2πi

ξ Φ
.

e2πi

ξ 
, s, 1

Σ .
 
ξ ∈  R;  R(s) > 1

Σ
, (13) 

but also such other important functions of Analytic Number Theory as the Polylogarithmic 

function Lis(z): 

Lis(z) ∞ 

:= ∑ 
n=1 

zn 

ns 
= 

z Φ(z, s, 1) 
(14) 

s ∈  C   when |z| < 1;  R(s) > 1    when |z| = 1 

and the Lipschitz-Lerch Zeta function φ(ξ, a, s): 
∞ 

φ(ξ, a, s) := ∑ 
n=0 

e2nπiξ 

(n + a)s 
= Φ

 

.
e2πi

ξ 
, s, a

Σ
 
=: L(ξ, s, a) (15) 

a ∈  C \ Z0
−;  R(s) > 0    when ξ ∈  R \ Z;  R(s) > 1    when ξ ∈  Z  , 

which was first studied by Rudolf Lipschitz (1832–1903) and Matyáš Lerch (1860–1922) 

in connection with Dirichlet’s famous theorem on primes in arithmetic progressions (see, for details, 

[31]). 
For various further extensions of the Hurwitz-Lerch Zeta function Φ(s, z, a), including 

its multi-parameter extensions, the reader is referred to the recent monograph by Srivastava 
and Choi [32] (see also the other more recent developments reported in [33,34]). In the 
monograph [32], one can also find a detailed systematic presentation of the double, triple and 
multiple Gamma functions which were studied by Barnes and others (see also (Whittaker and 
Watson [35], p.  264) and (Gradshteyn and Ryzhik [36], p.  661, Entry 6.441(4); p. 937, 

Entry 8.333)). 
An interesting and potentially useful family of the λ-generalized Hurwitz-Lerch Zeta 

functions, which further extend the multi-parameter Hurwitz-Lerch Zeta function 

Φ
(ρ1,··· ,ρp ;σ1,··· ,σq )

(z, s, κ)
 

λ1,··· ,λp ;µ1,··· ,µq 

defined by ([37], p. 503, Equation (6.2)) (see also [32]) 

Φ
(ρ1,··· ,ρp ,σ1,··· ,σq )

(z, s, κ)
 

λ1,··· ,λp ;µ1,··· ,µq 

 
∞ 

:= ∑ 

p 

∏ (λj)nρj 

j=1 zn
 

 

 

(16) 

q 
n=0 n! ∏ (µj )nσj j=1 

(n + κ)s 

.

p, q ∈  N0;  λ j ∈  C (j = 1, · · · , p);  κ, µ j ∈  C \ Z0
− (j = 1, · · · , q); 

ρj, σk  ∈  R+ (j = 1, · · · , p; k = 1, · · · , q); ∆ > −1  when  s, z ∈  C; 

∆ = −1  and  s ∈  C  when  |z| < ∇ ∗ ; 

∆ = −1  and  R(Ξ) > 
1   

when  |z| = ∇ ∗  

Σ

, 
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λ1,··· ,λp ;µ1,··· ,µq 

Γ(s) 0 tλ 

 
 

where, for convenience, 

q p 

 
q p 

p − q 

∆ := ∑ σj − ∑ ρj and Ξ := s + ∑ µj − ∑ λj + 
2 

(17) 

 
and j=1 j=1 

∗  
. p 

−ρj 

Σ 
j=1 

. q 
σj 

Σ 
j=1 

∇  := 

j=1 ∏ ρj 
∏ σj 

j=1 

, (18) 

It was introduced and investigated systematically in a recent paper by Srivastava [38], who 
also discussed their potential application in Number Theory by appropriately con- structing a 
presumably new continuous analogue of Lippert’s Hurwitz measure and, in ad- dition, considered 
some other statistical applications of these families of the λ-generalized Hurwitz-Lerch Zeta 
functions in probability distribution theory (see also the references to several related earlier works 
cited by Srivastava [38]). For the convenience of the inter- ested reader in pursuing some of the 
related open problems, we choose to reproduce here the definition of the λ-generalized Hurwitz-
Lerch Zeta function whose investigation was initiated by Srivastava [38]: 

Φ
(ρ1,··· ,ρp ,σ1,··· ,σq )

(z, s, a; 

b,
 

) :=
 1 

∫ ∞
 ts−1  exp

.

−at − 
 b 

Σ

 

· pΨ∗
q  (λ1, ρ1), · · · , (λp, ρp); 

(µ1, σ1), · · · , (µq, σq); 

ze−t  dt (19) 

min{R(a), R(s)} > 0; R(b) ≤ 0; λ ≤ 0 , 
so that, obviously, we have the following relationship with the multi-parameter Hurwitz- 
Lerch Zeta function defined by (16): 

Φ
(ρ1,··· ,ρp ,σ1,··· ,σq )

(z, s, a; 0, λ) = Φ
(ρ1,··· ,ρp ,σ1,··· ,σq )

(z, s, a)
 

λ1,··· ,λp ;µ1,··· ,µq 

λ1,··· ,λp ;µ1,··· ,µq 

= eb Φ(ρ1,··· ,ρp,σ1,··· ,σq)(z, s, a; b, 0). (20) 
λ1,··· ,λp ;µ1,··· ,µq 

 

4. The Mittag-Leffler Type Functions: Extensions and Generalizations 

 
We begin this section by recalling the familiar Mittag-Leffler function Eα(z) and its two-

parameter version Eα,β(z), which are defined, respectively, by (see [39–41]) 

E 
∞ zk ∞ zk 

 

α(z) := ∑ Γ(αk + 1) 
and Eα,β(z) := ∑ Γ(αk + β) 

(21) 

k=0 k=0 

.
z, α, β ∈  C; R(α) > 0

Σ
. 

The one-parameter function Eα(z) was first considered by Magnus Gustaf (Gösta) Mittag-

Leffler (1846–1927) in 1903 and its two-parameter version Eα,β(z) was introduced by Anders 

Wiman (1865–1959) in 1905 (see also [42]). 

The Mittag-Leffler functions Eα(z) and Eα,β(z) are natural extensions of the exponen- tial, 

hyperbolic and trigonometric functions. In fact, it is easily observed that 

E1(z) = ez,   E2

.
z2

Σ 
= cosh z,   E2

.
−z2

Σ 
= cos z, 

E z 
ez − 1 

 
 

and E z2 
sinh z 

.
 

1,2( ) = 
z 

2,2(  ) = 
z
 

Leffler functions Eα(z) and Eα,β(z) were presented by Gorenflo et al. [43], Haubold et al. [44] Some 

of the potentially useful properties, extensions and applications of the Mittag- 

λ 

· 
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j=1 j=1 

z
 

· 

 
 

and Kilbas et al. ([45,46] and ([47], Chapter 1)). The Mittag-Leffler function Eα(z) in (21) and its 

several generalized forms were computed numerically in the recent works in [48,49]. 

It should be remarked in passing that the families of Mittag-Leffler type functions have the 

demonstrated potential for application in a wide range of problems in applied as well as 

engineering sciences. Moreover, their several extended and generalized forms, including those 

involving multiple indices, are known to be needed in solving fractional differential and integro-

differential equations (see, for example, [50]; see also [51–53], as well as the references to the 

related earlier works which are cited therein). For a detailed presentation of some of these recent 

developments, one is referred to a recent survey-cum-expository review article [54]. 

sions of the Mittag-Leffler function Eα(z) in (21) are contained, as obvious special cases, Most 

(if not all) of the above-mentioned multi-parameter generalizations and exten- of the general Fox-

Wright function  pΨq   (p, q ∈  N0) or  pΨ∗
q    (p, q ∈  N0), with p numerator 

parameters a1, · · · , ap and q denominator parameters b1, · · · , bq such that 

a j ∈  C (j = 1, · · · , p) and bj ∈  C \ Z0
− (j = 1, · · · , q). 

These general Fox-Wright functions  pΨq  and  pΨ∗
q   are defined by (see, for details, ([9], Volume 

I, p. 183) and ([16], p. 21); see also ([47], p. 56), ([55], p. 65) and ([25], p. 19)) 

∗  

 
(a1, A1), · · · , 

.
ap , Ap

Σ
;     

p Ψq  (b1, B1), · · · , 
.
bq , Bq

Σ
; 

: 
∞   (a1)A1 n · · · 

.
ap

Σ

Apn   zn 

 

= ∑ 
n=0 

(b1) B1 n 
· · · 

.
bq

Σ
 Bqn 

n! 

Γ(b1) · · · Γ
.
bq

Σ
 

 
 

 
(a1, A1), · · · , 

.
ap , Ap

Σ
;     

=:  
Γ(a1) · · · Γ

.
ap

Σ p Ψq 
 

(b1, B1), · · · , .
bq , Bq

Σ
; 

z  (22) 

. . q p Σ Σ 

    
where, and in what follows, (λ)ν denotes the general Pochhammer symbol or the shifted 

factorial defined already by (3), and the equality in the convergence condition holds true 

only for suitably bounded values of |z| given by 

. 
p 

−Aj 

Σ . 
q 

Bj 

Σ 

|z| < ∇  := ∏ Aj 

j=1 

∏ Bj . 

j=1 

Clearly,  the generalized hypergeometric function   p Fq    (p, q N0) in (23),  with p 

numerator parameters a1, , ap  and q denominator parameters b1, , bq, is a widely 

function                  pΨq                (p,               q                 ∈              N0)            when and 

extensively investigated and potentially useful special case of the general Fox-Wright 

Aj = 1 (j = 1, · · · , p) and Bj = 1 (j = 1, · · · , q), 

, ≤ −1 ∑ Bj − ∑ Aj R(Aj) > 0 (j = 1, · · · , p); R(Bj) > 0 (j = 1, · · · , q); R 
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.  Σ                          φ( n 

 α β ∈  C R α 

α,

β 

z 
∑ 
n=0 

(b1)n · · · 
.
bq

Σ
 

n 
n! 

α,

β n=0 

s→

0 

α,

1 
s→

0 

α,

β 

z
 

 
 

given by 

 
a1, · · · , 

ap;     

 

  

∞   (a1)n · · · 
.

ap

Σ

n   z
n 

∗  

 
(a1, 1), · · · , 

.
ap, 1

Σ
;     

= pΨq  (b1, 1), · · · , 
.
bq , 1

Σ
; 

Γ(b1) · · · Γ
.
bq

Σ
 

 
 

 
(a1, 1), · · · , 

.
ap , 1

Σ
;     

= 
Γ(a1) · · · Γ

.
ap

Σ p Ψq 
 

(b1, 1), · · · , 

.
bq , 1

Σ
; 

z . (23) 

Just as we have already remarked above, various families of special functions of the Mittag-
Leffler and Fox-Wright types are known to play important roles in the theory of fractional 
calculus and operational calculus as well as in their applications in the basic processes of 
evolution, relaxation, diffusion, oscillation and wave propagation. Further- more, the Mittag-
Leffler type functions have only recently been calculated numerically in the whole complex plane 
(see, for example, [48,49]; see also [5,56]). Some other general families of Mittag-Leffler type 
functions have been investigated and applied recently (see, for details, [54] and the references to 
earlier works cited therein). 

It was my proud privilege to have met many times and discussed mathematical re- searches, 
especially on various families of higher transcendental functions and related topics, with my 
Canadian colleague, Charles Fox (1897–1977) of birth and education in England, both at McGill 
University and Sir George Williams University (now Concordia University) in Montréal, mainly 
during the 1970s (see, for details, [57]). Another remark- able mathematical scientist of modern 
times happens to be Sir Edward Maitland Wright (1906–2005), with whom I had the privilege to 
meet and discuss research emerging from his publications on hypergeometric and related higher 
transcendental functions during my visit to the University of Aberdeen in Scotland in the year 
1976. We recall here a series of monumental works by Wright (see, for example, [58–60]), in 
which he introduced and systematically studied the asymptotic expansion of the following Taylor-
Maclaurin series (see [58], p. 424): 

 
Eα,β 

(φ; z) := 

 

∞ ∑ 

n=0 

n) 
z , ; (  ) > 0 , (24) 

Γ(αn + β) 

where  φ(t) is a  function satisfying  suitable conditions.   Wright’s work  was  motivated 
substantially by the earlier developments involving simpler cases, which were reported by 
Mittag-Leffler in 1905, Wiman in 1905, Ernest William Barnes (1874–1953) in 1906, Godfrey 
Harold Hardy (1877–1947) in 1905, George Neville Watson (1886–1965) in 1913, Fox in 1928, 
and many other authors. In particular, the aforementioned work [61] by Bishop Ernest William 
Barnes (1874–1953) of the Church of England in Birmingham considered the asymptotic 
expansions of functions in the class defined below: 

∞ n 

E(κ)(s; z) := ∑ 
.
α, β ∈  C;  R(α) > 0

Σ 
(25) 

following relationships with the Mittag-Leffler type function  E(κ)(s; z) of Barnes [61]:  for suitably restricted parameters κ and s. It is easy to deduce, from the definition (25), the 

Eα(z) = lim
,

E(κ)(s; z)
, 

and Eα,β(z) = lim
,

E(κ)(s; z)
,

. (26) 

, 

bq; 

b1, · · · 
p F

q 

:= 

(n + κ)s Γ(αn + β) 

z 
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α,

β 

.  Σ  ϕ(    nz 
 α  β ∈  C   R(α) > 

n=0 n=0 

s→

0 

· 

· 

α→

0 

α,

β 
Γ(β) 

 
 

More interestingly, we also have the following relationship: 

lim
,

E(κ)(s; z)
, 

= 
   1     

Φ(z, s, κ) 

with the classical Lerch transcendent (or the Hurwitz-Lerch Zeta function) Φ(z, s, κ) defined 
by (12). 

As we have indicated above, Barnes [61] systematically presented asymptotic ex- pansions of 

many functions such as those in the class of the Mittag-Leffler type function 

E(κ)(s; z) defined by (25), and the classical Mittag-Leffler functions Eα(z) and Eα,β(z) de- fined by 

(21). On the other hand, the multi-parameter Hurwitz-Lerch Zeta function 

Φ
(ρ1,··· ,ρp ;σ1,··· ,σq )

(z, s, κ),
 

λ1,··· ,λp ;µ1,··· ,µq 

 
Wright function  pΨ∗

q  defined by (22) as well as the Hurwitz-Lerch Zeta function Φ(z, s, κ) defined 

by (16), obviously provides a natural unification and generalization of the Fox- defined by (12). 

definitions in (24) and (16) for suitably restricted function ϕ(τ) (see, for details, [1,54]): We 

conclude this section by recalling the following interesting unification of the 

Eα,β 

(ϕ; z, s, κ) := ∞ 

∑ 
n=0 

n) 

, ; 0 , (27) 

(n + κ)s Γ(αn + β) 

where the parameters α, β, s and κ are appropriately constrained as above. If, upon replac- 

ing the sequence {ϕ(n)}∞ in the definition (27) by the sequence {φ(n)}∞    , we readily 

observe that 
Eα,β(φ; z) = lim

.
Eα,β(ϕ; z, s, κ)

Σ
.
ϕ≡φ. (28) 

Moreover, if we put α = β = 1 and 
p 

∏ (λj)nρj 

j=1 

ϕ(n) = q 

∏ (µj)nσj 

j=1 

(n ∈  N0) (29) 

in the definition (27), then the definition (27) will immediately yield the definition (16) of the 
extended Hurwitz-Lerch Zeta function 

Φ
(ρ1,··· ,ρp ;σ1,··· ,σq )

(z, s, κ).
 

λ1,··· ,λp ;µ1,··· ,µq 

Alternatively, in the special case of (27) when α → 0, β = 1 and 

p 

∏ (λj)nρj 

j=1 

 
 

or, more simply, by setting 

ϕ(n) = 
q 

n! ∏ (µj)nσj j=1 (n ∈  N0) (30) 

ϕ(n) = Γ(αn + β) 

q 

p 

∏ (λj)nρj 

j=1 (n ∈  N0), (31) 

n! ∏ (µj)nσj j=1 
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2 

a+ 

a+ 

− 
µ
 

R 

R 

a+ 

Γ(µ) a 

a± 
( ± 

dx a± ( ) 

a± a± dx a± 

 
 

we are led to the extended Hurwitz-Lerch Zeta function 

Φ
(ρ1,··· ,ρp ;σ1,··· ,σq )

(z, s, κ)
 

λ1,··· ,λp ;µ1,··· ,µq 
 

defined by (16). 

5. Operators of Fractional Calculus and Their Applications 

The current literature is loaded by fractional-order modeling and analysis of real- world and 
other problems which arise in the mathematical, physical, biological, statistical and engineering 
sciences. It is truly amazing to see how fast the subject of fractional calculus has grown in recent 
years, the concept of which is rooted essentially in a question raised in the year 1695 by Marquis 
de l’Hôpital (1661–1704) to Gottfried Wilhelm Leibniz (1646–1716), which sought the meaning 
of Leibniz’s (currently popular) notation 

 

dny 

dxn 

for the derivative of order n ∈  N0 when n = 1 , and indeed also in Leibniz’s reply dated 30 

September 1695 to l’Hôpital as follows: 

“· · · This is an apparent paradox from which, one day, useful consequences will be 
drawn. · · · ” 

In widespread applications of fractional calculus, use is made of fractional-order derivatives 

of different (and, occasionally, ad hoc) kinds (see, for example, [62–74]). It is fairly traditional to 

define the fractional-order integrals and fractional-order derivatives by means of the following 

right-sided Riemann-Liouville fractional integral operator RL Iµ 

and the left-sided Riemann-Liouville fractional integral operator RL Iµ , and the correspond- 

ing Riemann-Liouville fractional derivative operators RL Dµ 
a 

and RL Da− , as follows (see, 

for example, ([9], Volume II, Chapter 13), ([47], pp. 69–70) and [75]): 

.
RL I

µ f 
Σ

(x) =
   1    

∫ x 

(x − t)µ−1 f (t) dt 
.
x > a;  R(µ) > 0

Σ
, (32) 

.
RL I

µ 
f 

Σ
(x) =

   1    
∫ a 

(t − x)µ−1 f (t) dt 
.
x < a;  R(µ) > 0

Σ 
(33) 

 
and 

a− Γ(µ) x 

.
RL D

µ f 
Σ 

x 

.  
 d  

Σn .
I

n−µ 
f 
Σ 

x 
. ≤ 0; n 1

Σ
, (34) 

 

where the function  f  is assumed to be at least locally integrable and [  (µ)] indicates   the greatest 

integer in (µ). It is worthwhile to remark in passing that, in the current literature, there is an 

unfortunate trend to trivially and inconsequentially translate known 

theory and known results based upon the classical Riemann-Liouville and other types   of 

fractional integrals and fractional derivatives in terms of the corresponding theory and the 

corresponding results by forcing in some obviously redundant (or superfluous) parameters and 

variables in the widely and extensively investigated definitions and results (see, for details, [1], 

Section 2, pp. 1504–1505). 

In a series of papers, Hilfer et al. (see [62–64]; see also [66,67,70]) introduced and studied 

an interesting family of generalized Riemann-Liouville fractional derivatives of 

order µ (0 < µ < 1) and type ν (0 ≤ ν ≤ 1). The right-sided Hilfer fractional derivative 

operator H Dµ,ν and the left-sided Hilfer fractional derivative operator H Dα,β of order 
a+ a 

µ (0 < µ < 1) and type ν (0 ≤ β ≤ 1) with respect to x are defined by 

.
H D

µ,ν 
f 
Σ

(x) = 

.

± H I
ν(1−µ)  d  .H I

(1−ν)(1−µ) 
f 
ΣΣ

(x), (35)
 

) = 
R(µ) = [R(µ)] + 

− 
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a± 

a+ 

D 

Γ(µ) x 

µ 
Σ . 

a± 

. Σ 

a 

, −

x
 

a+ Γ(µ) a 

j=0 
(j + κ)s Γ(αj + β) νj + µ − n 

a− 

. 

− 

 
 

in which the second member is tacitly assumed to exist. 
 

For ν = 0, (35) reduces to the familiar Riemann-Liouville fractional derivative operator. When ν 
= 1, (35) yields the fractional derivative operator that was introduced by (Liou- ville [76], p. 10) 

which, quite frequently, is attributed obviously incorrectly to Caputo [77] 

now-a-days, but which should more appropriately be called the Liouville-Caputo fractional 

derivative, giving due credit to the originator, Joseph Liouville (1809–1882), who considered such 

fractional derivatives many decades earlier in 1832 (see [76]). The general operators in (35) are 

referred to as the Hilfer fractional derivative operators (see, for example, [68]). 

The Hilfer fractional derivative operator Dα,β was applied in [64] (see also [50,78]). 

The Fox-Wright hypergeometric function pΨq(z) defined by (22), and also such more general 

functions as Meijer’s G-function and Fox’s H-function, were used as kernels of 

many different classes of operators of fractional calculus (see, for details, [25,72,79], as well as 

the references cited therein). It should be noted here that Srivastava et al. [72] used fractional 

integrals of the Riemann-Liouville type with kernels involving the Fox 
H-function and the Fox-Wright hypergeometric function pΨq(z). Moreover, they also 

The Wright function Eα,β(ϕ; z) in (24), which was introduced and studied in [58] as considered 

applications of their results to the general H-function (see, for example, [29]). long ago as 1940, has 

appeared recently in [80] in connection with fractional calculus, 

but without giving due credit to Wright [58]. Closely following the recent works [1,54], 

the general right-sided fractional integral operator I µ  (ϕ; s, κ) and the general left-sided 

fractional integral operator I µ  (ϕ; z, s, κ, ν), and the corresponding fractional derivative 

operators µ ; z, s, , a 
µ ; z, s, , 

, each of the Riemann-Liouville type, are 

a+(ϕ defined by κ ν) and Da−(ϕ κ ν) 
.
I

µ
 

(ϕ; z, s, κ, ν) f 
Σ

(x) =
 1 

∫ x 

(x − t)µ−1 E 
.
ϕ; z(x − t)ν, s, κ

Σ 
f (t) dt (36) 

.
x > a; R(µ) > 0

Σ
, 

µ  
(ϕ; z, s, κ, ν) f 

Σ
(x) = 

1
 

∫ a 

(t − x)µ−1 E 

 
α,

β 

.
ϕ; z(t − x)ν, s, κ

Σ 
f (t) dt (37) 

 
and 

.
x < a; R(µ) > 0

Σ
 

.
Da±(ϕ; z, s, κ, ν) f 

Σ
(x) = 

 d n 
± 

dx I n−µ(ϕ; z, s, κ, ν) f 
Σ

(x) (38) 

R(µ) ≤ 0; n = [R(µ)] + 1 , 

where f is in the space L(a, b) of Lebesgue integrable functions on an interval [a, b] (b > a) 

of R, which is given explicitly by 

L(a, b ) = 

. 

f : ǁ f ǁ1 = 

∫ b
| f (x)|dx < ∞

Σ

. (39) 

For potential applications based upon the general fractional-calculus operators de- fined by the 
Equations (36) to (38), we list below several useful properties of the kernel 

Eα,β

.
ϕ; zxν, s, κ

Σ 
involved therein. 

 
dn 

µ 1 

dxn 
Eα,β 

.
 

ϕ; zxν, s, κ
Σ, 

∞ 

= xµ−n−1 ∑ 
ϕ(j) 

Γ(νj + µ) 
. 

Σ 
.
zxν

Σj
 (40) 

.
n ∈  N0; R(µ) > 0; R(ν) > 0; R(α) > 0

Σ
, 

   

   

.
I

 

α,

β 

Γ 
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, −

x
 

. Σ 

∫ 

E

 . Σ 

∑ 

. Σ 

. Σ 

. Σ 

j=0 

. Σ 

j=0 

. Σ 

τ Eα,

β 

ϕ; zτ , s, κ : s 
= 

sµ 
∑ 

(j + κ)s Γ(αj + β) sν 

τ Eα,

β 
, s, κ : s 

= 
sµ 

∑ 
(j + κ)s sα 

 
 

which, in the special case when µ = β and ν = α, yields 

dn 
β 1 

dxn 

Eα,β 

.
 

ϕ; zxα, s, 

κ
Σ, 

= 

xβ−n−1 
Eα,β−n 

.
 ϕ; zxα, s, κ

Σ 
(41) 

n ∈  N0; R(α) > 0; R(β) > 0 , 
provided that each member of the Equations (40) and (41) exists. 

I
,

tµ−1 Eα,β

.
ϕ; ztν , s, κ

Σ,
(x) 

:= 
x 

tµ−1 
0 ∞ 

 
α,

β 

ϕ; ztν, s, κ dt 

j) Γ(νj + µ) j 

= xµ 

  ϕ(  

j=0 
(j + κ)s Γ(αj + β) Γ

.
νj + µ + 1 

Σ 
.
zxν

Σ
 (42) 

R(µ) > 0; R(ν) > 0; R(α) > 0 , 
provided that the integral exists. More generally, we have 

In

,
tµ−1 Eα,β

.
ϕ; ztν, s, κ

Σ,
(x)    

∞ µ+n−1 j) Γ(νj + µ + n − 1) ν j 
 

= x ∑ 
ϕ( 

. Σ 
.
zx 

Σ
 

(43) 

 

n ∈  N; R(µ) > 0; R(ν) > 0; R(α) > 0 , 

which, in the special case when µ = β and ν = α, yields 

In

,
tβ−1 Eα,β

.
ϕ; ztα, s, κ

Σ,
(x) = xβ+n−1 Eα,β+n

.
ϕ; zxα , s, κ

Σ 
(44) 

n ∈  N;  R(α) > 0;  R(β) > 0 , 
provided that each member of the Equations (43) and (44) exists. 

For the operator L of the Laplace transform given by 

L{ f (τ) : s} := 

∫ 

e−sτ  f ( ) d  =: F(s) 
.
R(s) > 0

Σ
, (45) 

∞ 

τ 
 

where the function f (τ) is so constrained that the integral exists, we get 

, 
µ−1 

. 
ν Σ , 1 ∞ 

   ϕ(j) Γ(νj + µ) 
.
 z 

Σj 

R(s) > 0; R(µ) > 0; R(ν) > 0; R(α) > 0 , 
provided that each member of (46) exists. For µ = β and ν = α, the Laplace transform Formula (46) assumes the following simpler form: 

 

, 
β−1 

. 
α Σ , 1 ∞ 

   ϕ(j) 
.
 z 

Σj 

R(s) > 0; R(α) > 0; R(β) > 0 . 
Unfortunately, by trivially changing, in the definition of the classical Laplace trans- 

form (45), the index s or the integration variable t or both the index s and the integration variable 
t, many mainly amateurish-type researchers have made and continue to make the obviously false 
claim to have “generalized” the classical Laplace transform (45) itself. Some of the examples in 
this connection include, but are not limited to, the so-called Sumudu 

0 

j=0 
(j + κ)s Γ(αj + β) 

Γ νj + µ + n 

L (46) 

L ϕ; zτ 

(47) 

τ 
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P 

0+ 

0+ 

. 
D

 

Γ(λ − µ) 

. 
D

 
. 

D
 

− ∑ 

D f 

Σ 

0+ 

k

! 

 
 

transform, the so-called natural transform, the so-called Shehu transform, the so-called 

δ-transform, the so-called k-Laplace transform, and so on (see, for details, [1], Section 4, pp. 
1508–1510). 

Various special cases and consequences of the above key results, involving simpler functions 
of the types which we have considered in this and the preceding sections, can be deduced fairly 
easily. We turn instead to the following examples of applications involving fractional-order 
derivatives of one kind or the other.   In this connection, we note the 

following relationship between the Riemann-Liouville fractional derivative   RL Dµ   and 

the Liouville-Caputo fractional derivative LC Dµ of order µ (see, for example, ([47], p. 91, 

Equation (2.4.1)) with a = 0): 
.

LC D
µ f 

Σ 
x 

.

RL D
µ 

. 

f t n−1 
 

 

f (k)(0) 
tk

ΣΣ 

x , (48) 
 

0+ ( ) = 
where n is given by 

0+ ( ) ∑ ( ) 

k=0 

 

 
Equivalently, since n = 

 

[R(µ)] + 1 (µ ƒ= N0) 

µ (µ ∈  N0). 

(49) 

RL µ 

0+ 

,
tλ−1

,Σ
(x) = 

    Γ(λ)    
xλ−µ−1 

.
R(λ) > 0;  R(µ) ≤ 0

Σ
, (50) 

the relationship (48) can be written as follows: 

 LC µ 

0+ f 
Σ

(x) = 

 RL µ 

0+ 
f 
Σ

(x 

n−1 

) 

k=0 

f (k)(0) 

Γ(k − µ + 1) 

 

xk−µ, (51) 

where n is given, as before in (48), by (49). 

I. The basic processes of relaxation, diffusion, oscillations and wave propagation were revisited 
by Gorenflo et al. [43] who introduced the Liouville-Caputo type fractional-order derivatives in the 
governing (ordinary or partial) differential equations and considered each of the following 
fractional differential equations: 

 

 
and 

dα u 

dtα + c u(t; α) = 0 (c > 0; 0 < α ≤ 2) (52) 

∂2β u ∂2u 

∂t2β  = k 
∂x2 

(k > 0;  − ∞ < x < ∞; 0 < β ≤ 1), (53) 

where the aforementioned Liuoville-Caputo fractional derivative of order µ > 0 of a causal 

function f (t), that is, 
 

is given by 

dµ 

dxµ { f (x)} = 
.

LC 

 
µ (x) 

f (t) = 0 (t < 0), 

 
f (n)(x) (µ = n ∈  N0) 

 

:=  
  1 

∫ x f (n)(t) (54) 

Σ 

  
Γ(n − µ) 0 (x − t)µ−n+1 

dt n − 1 < R(µ) < n; n ∈  N . 

Here, as usual, n is given by (49) and f (n)(t) denotes the ordinary derivative of f (t) of order n. 

− 

α 

. 
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− 

≡ 

2 

2 

. Σ 

∫ 

n=0 

ν 

n=0 

2 2 

|x| Gc(x, t; β) = 
2
 ∑ 

n! Γ(1 − β − βn) z = √
ktβ 

; 0 < β < 1 

Jν (z) := ∑ 
n! Γ(µn + ν + 1) 

= 0Ψ2
 

 

 
condition u(0+; α) = u0. Moreover, it can be viewed as fractional oscillation when 1 < α ≤ The Equation (52) represents fractional relaxation when 0 < α ≤ 1 under the initial 2 under the following initial conditions: 

 

u(0+; α) = u0 and u̇ (0+; α) = v0, 

transition from α = 1 to    α    =   1+,    and    u̇    is    the    time-derivative    of    u. where v0 0 for continuous dependence of the solution on the parameter α also in the 
In the Equation (53), u  = u(x, t; β) is assumed to be a causal function of time (t  > 0) 

such that 

u(∓ ∞, t; β) = 0. 
Clearly, the Equation (53) represents fractional diffusion when 0 < β ≤ 1 under the initial condition u(x, 0+; β) = f (x). It can also be viewed as fractional wave equation when 1 < β ≤ 1 under the following initial conditions: 

 

u(x, 0+; β) = f (x) and u̇ (x, 0+; β) = g(x), 
where g(x) ≡ 0 for continuous dependence of the solution on the parameter β also in the transition from β = 1 − to β = 1 +. 

In terms of the Mittag-Leffler function Eα(z) defined by (21), the explicit solution of the initial-value problem involving the fractional differential Equation (52) is given by 

u(t; α) = u0 Eα  − (ct)α . (55) 

On the other hand, the explicit solution of the initial-value problem involving the 

fractional differential Equation (53) can be expressed as follows: 

u(x, t; 
) = 

∞

 
−∞ Gc(ξ 

 
, t; 

β) f (x − ξ) dξ 

 
, (56) 

where Gc(x, t; β) denotes the Green function given by 

z   ∞ (−z) 

. 
 |x| 

Σ
 

 
 

the Bessel-Wright function Jµ(z) defined by (see, for example, [17], p. 42, Equation II.5 (22)) which, 

in turn, can easily be expressed in terms of Wright’s generalized Bessel function or 

µ 
∞ (−z) 

 
; 

 

 

 

II. In recent years, various different forms of kinetic equations of fractional order have been widely 

used, especially in the modeling and analysis of a number of important problems of physics and 

astrophysics (see, for details, [81]). Particularly, in the past decade or so, kinetic equations of 

fractional order have apparently gained popularity, mainly because of the discovery of their 

relation with the theory of CTRW (Continuous-Time Random Walks) (see [66]). These equations 

have been and are being investigated with the aim to first determine and then interpret certain 

physical phenomena which are known to govern such processes as (for example) diffusion in 

porous media, reaction and relaxation in complex systems, anomalous diffusion, and so on (see 

also [63,82]). 
Theorems1to3below, each of which was established in [ 54], are sufficiently general key 

results, which are capable of being appropriately and suitably specialized with a view to including 
solutions of the corresponding (known or new) fractional-order kinetic equations associated with a 
large variety of simpler functions than those involved herein. With a view to making our 
presentation accessible readily to the interested reader, we have 

(1, 1), (ν + 1, µ); 

n 

n 

, (57) 

− z . (58) 

β 
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∈  E 

0+ 

∈  

0+ 

.  Σ
Φ  z, s, κ  , 

E 

 
 

chosen to essentially reproduce each of these fundamental results (Theorems1to3below) from 
our earlier work [54]. 

 

Theorem 1.  Let c, µ, ν, ρ, σ R+. Suppose also that the general function α,β(ϕ; z, s, κ), defined 

by (27), exists. Then the solution of the following generalized fractional kinetic equation: 

 

 
is given by 

N(t) − N0 tµ−1 Eα,β

.
ϕ; ztν , s, κ

Σ 
= −cρ 

.
RL Iσ N

Σ
(t) (59) 

N(t) = ∞ 

N0 t
µ−1 ∑ ( 

r=0 

cρ tσ )r 

∞
  ϕ(j) Γ(νj + µ)  ν j 

∑ 
j=0 

(j + κ)s Γ(αj + β) Γ(νj + σr + µ) 
(zt )

 
(t > 0), (60) 

provided that the right-hand side of the solution asserted by (60) exists. 

Theorem 2.  Let c, µ, ν, ρ, σ R+. Suppose also that the general function Eα,β(φ; z), defined by 

(24), exists. Then the solution of the following generalized fractional kinetic equation: 

 

 
is given by 

N(t) − N0 tµ−1 Eα,β

.
φ; ztν

Σ 
= −cρ 

.
RL Iσ N

Σ
(t) (61) 

N(t) = ∞ 

N0 t
µ−1 ∑ ( 

r=0 

cρ tσ )r 

∞
  φ(j) Γ(νj + µ)  ν j 

∑ 
j=0 

Γ(αj + β) Γ(νj + σr + µ) 
(zt )

 
(t > 0), (62) 

provided that the right-hand side of the solution asserted by (62) exists. 

Theorem 3. For c, µ, ν, ρ, σ ∈  R+, let the extended Hurwitz-Lerch Zeta function: 
(ρ1,··· ,ρp ;σ1,··· ,σq ) 

λ1,··· ,λp ;µ1,··· ,µq 

defined by (16), exist. Then the solution of the following generalized fractional kinetic equation: 

N(t) − N0 tµ−1 Φ(ρ1,··· ,ρp ;σ1,··· ,σq )
.
ztν, s, κ

Σ 
= −cρ 

.
RL Iσ   N

Σ
(t) (63) 

 
is given by 

λ1,··· ,λp ;µ1,··· ,µq 0+ 

 

N t N 
 

∞ 

tµ−1 
cρ tσ   r       Γ(µ)  

( ) = 0 ∑ ( 

r=0 

) 
Γ(σr + µ) 

(ν,ρ1,··· ,ρp ;ν,σ1,··· ,σq ) 

µ,λ1,··· ,λp ;σr+µ,µ1,··· ,µq 

.
ztν, s, κ

Σ 
(t > 0), (64) 

provided that the right-hand side of the solution asserted by (64) exists. 

 
Remarkably, the general function α,β(ϕ; z, s, κ), defined by (27), occurring in the non- 

homogeneous term of the kinetic Equation (59) of fractional order is distinctly advantageous 

because of its generality. Naturally, therefore, solutions of other kinetic equations involving other 

simpler non-homogeneous terms can be derived as appropriate special cases of the solution (60) 

given by Theorem1. Similar remarks would apply equally strongly to the results (62) and (64), 

which are provided by Theorems2and3, respectively. 

− 

· 

− 

· 

− 

· Φ 
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0+ 

0+ 

0+ 

0+ 

. 
D

 

0+ 

0+ 
x→0+ 

0+ 

.
RL I1−α f 

Σ
(0+) :=  lim  

,.
RL I1−α f 

Σ
(x)
,

 

 

 
III. The unified fractional derivative operator H Dα,β of order α  (0 < α < 1) and type β (0 ≤ 
β ≤ 1), defined by the Equation (35), was considered by Hilfer (see [63]) in order to derive the 

solution of the following general fractional differential equation: 

.
H Dα,β f 

Σ
(x) = λ f (x) (x > 0) (65) 

under the initial condition given, in terms of the corresponding two-parameter fractional 

integral operator H Iα,β, by 

 

 
where it is tacitly assumed that 

.
H I (1−β)(1−α) f 

Σ
(0+) = c0, (66) 

.
H I

(1−β)(1−α) 
f 
Σ

(0+) :=  lim  
,.

H I
(1−β)(1−α) 

f 
Σ

(x)
,

,
 

c0 is a given constant and the parameter λ is the eigenvalue. Hilfer’s solution of the above initial-

value problem is given by (see [63], p. 115, Equation (124)): 

f (x) = c0  x
(1−β)(α−1) Eα,α+β(1−α)(λxα ), (67) 

where Eα,β(z) denotes the two-parameter Mittag-Leffler function defined by (21). 

If we put β = 0 and c0 = 1 in Hilfer’s solution (66), we can deduce the corrected 

version of the claimed solution (see [74], p. 802, Equation (3.1); see also [78]) of the following 

initial-value problem: 
RL α 

0+ f 
Σ

(x) = λ f (x) (x > 0), (68) 
under the initial condition given by 

.
RL I1−α f 

Σ
(0+) = 1, (69) 

where, as also in the equation (66), 

 

0+ 

in the form given by 

x→0+ 
0+

 

f (x) = xα−1 Eα,α(λxα), (70) 
in terms of the two-parameter Mittag-Leffler function defined by (21). 

In concluding this section, we remark that, in recent years, various real-world prob- lems and 
issues in many areas of mathematical, physical and engineering sciences have been modeled and 
analyzed by appealing to several powerful tools, one of which involves applications of the operators 
of fractional calculus. Notably, a number of important and po- tentially useful definitions have been 
introduced and used for fractional-order derivatives. These include, among others, the fractional-
order derivative operators which stem from the Riemann-Liouville, the Grünwald-Letnikov, the 
Liouville-Caputo, the Caputo-Fabrizio and the Atangana-Baleanu fractional-order derivatives (see, 
for example, [47,83–85]). 

The Riemann-Liouville fractional derivative is known to involve the convolution of a given 
function and a power-law kernel (see, for details, [47,85]).  On the other hand,  the Liouville-
Caputo (LC) fractional derivative involves the convolution of the local deriva- tive of a given 
function with a power-law function [86]. The fractional-order deriva-  tives proposed by Caputo 
and Fabrizio [84] and Atangana and Baleanu [83] are based upon the exponential decay law 
which is a generalized power-law function (see [87–92]). The Caputo-Fabrizio (CFC) fractional-
order derivative as well as the Atangana-Baleanu (ABC) fractional-order derivative allow us to 
describe complex physical problems that fol- 
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low, at the same time, the power law and the exponential decay law (see, for details, [87–92]). Such 
items of information as those presented in many of these works are believed to have the potential to 
generate further developments on fractional-order modeling and analysis of interesting applied 
problems. Many experiments and theories have shown that a fairly large number of abnormal 
phenomena, which occur in the engineering and applied sci- ences, can be described well by using 
discrete fractional calculus (see, for example, [93]). In particular, fractional difference equations 
have been found to provide powerful tools in the modeling and analysis of various phenomena in 
many different fields of science and engineering including those in mathematical physics, fluid 
mechanics, heat conduction, and so on. 

 

6. Concluding Remarks and Observations 

Commonly known as special functions or mathematical functions, the origin of many 
members of the remarkably vast family of higher transcendental functions can be traced back to 
such widespread areas as (for example) mathematical physics, analytic number theory and applied 
mathematical sciences. Here, in this survey-cum-expository review article, our objective has been 
to briefly present an introductory overview and survey of some important recent developments in 
the theory of several extensively studied families of higher transcendental functions (or, more 
popularly, special functions) and their potential applications in (for example) mathematical 
physics, analytic number theory and applied mathematical sciences. For further reading and 
researching by those who are interested in pursuing this subject, we have chosen to provide 
references to various useful monographs and textbooks on the theory and applications of higher 
transcendental functions. We have also considered several operators of fractional calculus, which 
are associated with higher transcendental functions, briefly indicating their applications as well. 

The bibliography in this review article includes a number of recently published journal 
articles which have dealt with the extensively investigated subject of fractional calculus and its 
widespread applications. In fact, having an overview of the on-going contributions to the theory 
and applications of fractional calculus, which are continually appearing in some of the leading 
journals devoted to mathematical and physical sciences, biological sciences, statistical sciences, 
engineering sciences, and so on, the subject-matter, which we have dealt with in this review 
article, is remarkably important and potentially useful. Moreover, the interested future researchers 
will surely benefit from the listing of references to some of the other applications of various 
fractional-calculus operators in the mathematical and other sciences, which we have not 
considered in the preceding sections (see, for example, [94–111]). 

There is considerable literature investigating and applying the quantum or basic (or q-) calculus 

not only in the area of higher transcendental functions, which we have presented in Section2, and 

Geometric Function Theory of Complex Analysis (see, for a detailed historical and introductory 

overview, the recently published survey-cum-expository re- view article [102]),  but also in the 

modeling and analysis of applied problems as well    as in extending the well-established theory 

and applications of various rather classical mathematical functions and mathematical inequalities. 

It is regretful, however, to see that a large number of mostly amateurish-type researchers on these 

and other related topics con- 

translations of the known q-results in terms of the so-called (p, q)-calculus by unnecessarily tinue to 

produce and publish obvious and inconsequential variations and straightforward forcing-in an 

obviously superfluous (or redundant) parameter p into the classical q-calculus 

and thereby falsely claiming “generalization” (see [102], p. 340 and [1], Section 5, pp. 1511–

1512). Such tendencies to produce and flood the literature with trivialities should be discouraged 

by all means. 
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