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Abstract—There has been considerable recent research into the 
connection between Parkinson’s disease (PD) and speech impair- 
ment. Recently, a wide range of speech signal processing algorithms 
(dysphonia measures) aiming to predict PD symptom severity us- 
ing speech signals have been introduced. In this paper, we test how 
accurately these novel algorithms can be used to discriminate PD 
subjects from healthy controls. In total, we compute 132 dysphonia 
measures from sustained vowels. Then, we select four parsimonious 
subsets of these dysphonia measures using four feature selection 
algorithms, and map these feature subsets to a binary classifica- 
tion response using two statistical classifiers: random forests and 
support vector machines. We use an existing database consisting of 
263 samples from 43 subjects, and demonstrate that these new dys- 
phonia measures can outperform state-of-the-art results, reaching 
almost 99% overall classification accuracy using only ten dyspho- 
nia features. We find that some of the recently proposed dysphonia 
measures complement existing algorithms in maximizing the abil- 
ity of the classifiers to discriminate healthy controls from PD sub- 
jects. We see these results as an important step toward noninvasive 
diagnostic decision support in PD. 

Index Terms—Decision support tool, feature selection (FS), 
Parkinson’s disease (PD), nonlinear speech signal processing, ran- 
dom forests (RF), support vector machines (SVM). 

 

I. INTRODUCTION 

EUROLOGICAL disorders affect people’s lives at an 

epidemic rate worldwide. Parkinson’s disease (PD) is one 

of the most common neurodegenerative disorders with an in- 

cidence rate of approximately 20/100 000 [1] and a preva- 

lence rate exceeding 100/100 000 [2]. Moreover, these statis- 

tics might underestimate the problem because PD diagnosis   

is complicated [3]. Given that age is the single most impor- 

tant factor for PD and the fact that the population is growing 

older, these figures could further increase in the not too 

distant future [4]. 

Identifying the causes of PD onset remains elusive, 

although genetic and environmental factors may be implicated 

[1]; hence, the disease is often referred to as idiopathic. In those 

cases where particular factors can be identified that cause PD-

like symptoms (for example drugs), the disease is termed 

Parkinsonism. PD symptoms include tremor, rigidity and loss 

of muscle control in general, as well as cognitive impairment. 

The difficulty in reliable PD diagnosis has inspired re- 

searchers to develop decision support tools relying on algo- 

rithms aiming to differentiate healthy controls from people with 

Parkinson’s (PWP) [5]–[7]. Although this binary discrimination 

approach does not form a differential diagnosis (a differential di- 

agnostic tool should be able to distinguish PD subjects amongst 

a variety of disorders that present PD-like symptoms), it is a 

promising first step toward that long-term goal. 

Research has shown that speech may be a useful signal for 

discriminating PWP from healthy controls [5], [7], on the basis 

of clinical evidence which suggests that the vast majority of 

PWP typically exhibit some form of vocal disorder [8]. In fact, 

vocal impairment may be amongst the earliest prodromal PD 

symptoms, detectable up to five years prior to clinical diagno- 

sis [9]. In our own research, we have also presented strong ev- 

idence linking speech to average Parkinson’s disease symptom 

severity [5], [10]–[13]. Collectively, these findings reinforce the 

notion that speech may reflect disease status, after appropriate 

processing of the recorded speech signals. 

The range of symptoms present in speech includes reduced 

loudness, increased vocal tremor, and breathiness (noise). Vocal 

impairment relevant to PD is described as dysphonia (inabil- 

ity to produce normal vocal sounds) and dysarthria (difficulty 

in pronouncing words). We refer to Baken and Orlikoff [14] 

for a more detailed description of speech disorders. The ex- 

tent of vocal impairment is typically assessed using sustained 

vowel phonations, or running speech. Although it can be argued 

that some of the vocal deficiencies in running speech (such as 

combinations of consonants and vowels) might not be captured 
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by the use of sustained vowels, the analysis of running speech 

is more complex due to articulatory and other linguistic con- 

founds [15], [16]. Therefore, the use of sustained vowels, where 

the speaker is requested to sustain phonation for as long as pos- 

sible, attempting to maintain steady frequency and amplitude at 

a comfortable level, is commonplace in clinical practice [15]. 

Research has shown that the sustained vowel “ahh.. .” is suf- 

ficient for many voice assessment applications [15], including 

PD status prediction [5] and average PD symptom monitoring 

[10], [11]. 

The study of speech disorders in general and in the con- 

text of PD, in particular, has prompted the development of 

many speech signal processing algorithms (henceforth dys- 

phonia measures), for example, see [5], [7], [11], [15], and 

references therein. In [5], it was shown that the most com- 

monly used speech signal processing algorithms could dis- 

criminate PWP from healthy controls with approximately 90% 

overall classification accuracy, using four dysphonia features. 

That study included traditional measurement algorithms fo- 

cusing on fundamental frequency perturbation (jitter mea- 

sures), amplitude perturbation (shimmer measures), and signal- 

to-noise ratios (SNRs) (harmonics-to-noise ratio measures). 

Moreover, that study included three novel nonlinear dys- 

phonia measures, complementing the classical measures (see 

Section II-A). 

Subsequently, the dysphonia measures of [5] were applied to 

the study of the related problem of mapping speech impairment 

to average PD symptom severity [10]. Very recently, additional 

nonlinear dysphonia measures have been proposed for that ap- 

plication [11], which (coupled with some classical algorithms) 

significantly improved on previous results [10]. Hence, we hy- 

pothesized that applying the dysphonia measures of [11] to the 

problem of discriminating PWP from healthy controls might 

bring additional insight, and improved results [5]. 

 

 
II. DATA 

The National Center for Voice and Speech (NCVS) database 

comprises 263 phonations from 43 subjects (17 females and 26 

males, 10 healthy controls, and 33 PWP), an extension of the 

database used in [5] (the extended database includes all the voice 

recordings from the earlier study). The ten healthy controls (four 

males and six females), had an age range of 46–72 years with 

(mean   standard deviation) 61   8.6 years, and we processed 

61 healthy phonations. The 33 PWP (22 males and 11 females), 

had an age range of 48–85 (67.2    9.3), time since diagnosis 0 to 

28 years (5.8 6.3); there are 202 PD phonations. This database 

comprises six or seven sustained vowel “ahh.. .” phonations 

from each speaker, recorded at a comfortable frequency and 

amplitude. 

The phonations were recorded in an IAC sound-treated booth 

with a head-mounted microphone (AKG C420), which was 

placed at 8-cm distance from the subject’s mouth. The voice 

signals were sampled at 44.1 kHz with 16 bits resolution, and 

were recorded directly to computer using CSL 4300B hardware 

(Kay Elemetrics). 

TABLE I 

BREAKDOWN OF THE 132 DYSPHONIA MEASURES USED IN THIS STUDY 
 

 

 
III. METHODS 

The aim of this study is to analyze the speech signals, extract 

features, and to attempt to map these features to the response 

(PD versus healthy control). 

 

A. Extracting Features From the Speech Signals 

We use the dysphonia measures rigorously defined in [11]. 

The rationale, background, and algorithms used to compute 

these features are also explained in detail in that paper. Here, we 

summarize these algorithms. For convenience, Table I lists the 

extracted features, grouped together into algorithmic “families” 

of features that share common attributes, along with a brief 

description of the properties of the speech signals that these 

algorithms aim to characterize. 

Typical examples of features are jitter and shimmer [14], [15]. 

The motivation for these features is that the vocal fold vibration 

pattern is nearly periodic in healthy voices, whereas this peri- 

odic pattern is considerably disturbed in pathological cases [15]. 

Therefore, PWP are expected to exhibit relatively large values 

of jitter and shimmer compared to healthy controls. Different 

studies use slightly different definitions of jitter and shimmer, 

for example, by normalizing the measure over a different range 

of vocal fold cycles (time interval between successive vocal fold 

collisions). For that reason, here we investigate many variations 

of these algorithms which we collectively refer to as jitter and 

shimmer variants [11]. 
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Building on the concept of irregular vibration of the vocal 

folds, earlier studies have proposed the recurrence period den- 

sity entropy (RPDE), the pitch-period entropy (PPE), the glottis 

quotient (GQ), and F0-related measures [5], [11]. GQ attempts 

to detect vocal fold cycle durations [17]. Then, we work directly 

on the variations of the estimated cycle durations to obtain the 

GQ measures. RPDE quantifies the uncertainty in estimation 

of the vocal fold cycle duration using the information theoretic 

concept of entropy. PPE uses the log-transformed linear predic- 

tion residual of the fundamental frequency in order to smooth 

normal vibrato (normal, small, periodic perturbations of the vo- 

cal fold cycle durations which are present in both healthy and PD 

voices [15]), and measures the impaired control of fundamental 

frequency (F0) during sustained phonation. The F0-related mea- 

sures (such as the standard deviation of the F0 estimates) include 

the difference in the measured F0 with the expected, healthy F0 

in the population for age- and gender-matched controls [15]. 

The second general family of dysphonia measures quantifies 

noise, or produces a SNR estimate. The physiological motiva- 

tion for these measures is that pathological voices exhibit in- 

creased aeroacoustic noise because of the creation of excessive 

turbulence due to incomplete vocal fold closure. Such measures 

include the harmonic-to-noise ratio (HNR), detrended fluctu- 

ation analysis (DFA), glottal to noise excitation (GNE), vocal 

fold excitation ratio (VFER), and empirical mode decomposi- 

tion excitation ratio (EMD-ER). GNE and VFER analyze the 

full frequency range of the signal in bands of 500 Hz [11]. Addi- 

tionally, we have created SNR measures using energy, nonlinear 

energy (Teager–Kaiser energy operator) and entropy concepts 

whereby the frequencies below 2.5 kHz are treated as “signal”, 

and everything above 2.5 kHz is treated as “noise” [11]. EMD- 

ER has a similar justification: the Hilbert–Huang transform [18] 

decomposes the original signal into components, where the ini- 

tial components are the high-frequency constituents (in practice 

equivalent to noise), and the later components constitute useful 

information (actual signal). 

Finally, mel-frequency cepstral coefficients (MFCC) have 

long been used in speaker identification and recognition ap- 

plications, but have shown promise in recent biomedical voice 

assessments [11], [19], [20]. They are aimed at detecting subtle 

changes in the motion of the articulators (tongue, lips), which 

are known to be affected in PD [8]. 

Overall, applying the 132 dysphonia measures to the 263 

NCVS speech signals, gave rise to a 263 132 feature matrix. 

There were no missing entries in the feature matrix. 

 
B. Preliminary Statistical Survey of Dysphonia Features 

In order to gain a preliminary understanding of the statistical 

properties of the features, we computed the Pearson correlation 

coefficient and the mutual information I(x,y), where the vector 

x contains the values of a single feature for all phonations, and 

y is the associated response. As in [11], we normalize I(x,y)  

by dividing through I(y,y) for presentation purposes. The larger 

the value of the normalized mutual information, the stronger 

the statistical association between the feature and the response. 

We used the KDE Toolbox by Ihler and Mandel for the compu- 

tation of the mutual information [21]. The mutual information 

is computed via the evaluation of the marginal entropies H(x), 

H(y) and the joint entropy H(x,y). The entropies are computed 

by evaluating the mean log-likelihood of the density estimates 

(the densities are computed using kernel density estimation with 

Gaussian kernels) [21]. 

 

C. Feature Selection 

With the large number of dysphonia features of this study, 

we cannot expect the feature space to be uniformly populated 

by only 263 phonations, and the risk of overfitting arises. Many 

classification algorithms are fairly robust to the inclusion of po- 

tentially noisy or irrelevant features, and their predictive power 

may or may not be severely affected; however, reducing the num- 

ber of features often improves the model’s predictive power for 

hold-out data. A reduced feature subset also facilitates infer- 

ence, enabling one to gain insights into the problem via analysis 

of the most predictive features [22], [23]. 

Exhaustive search through all possible feature subsets is com- 

putationally intractable, a problem which has led to the devel- 

opment of feature selection (FS) algorithms which offer a rapid, 

principled approach to reduction of the number of features. FS 

is a topic of extensive research, and we refer to Guyon et al. [23] 

for further details. 

Here, we have compared four efficient FS algorithms: 1) 

least absolute shrinkage and selection operator (LASSO) [24], 

2) minimum redundancy maximum relevance (mRMR) [25], 

3) RELIEF [26], and 4) local learning-based feature selection 

(LLBFS) [27]. LASSO penalizes the absolute value of the co- 

efficients in a linear regression setting; this leads to some coef- 

ficients that are shrunk to zero, which effectively means that the 

features associated with those coefficients are eliminated. The 

LASSO has been shown to have oracle properties (correctly 

identifying all the “true” features contributing toward predict- 

ing the response) in sparse settings when the features are not 

highly correlated [28]. However, when the features are corre- 

lated, some noisy features (not contributing toward predicting 

the response) may still be selected [29]. Moreover, some useful 

features toward predicting the response amongst the correlated 

features may be discarded [22]. The mRMR algorithm uses a 

heuristic criterion to set a tradeoff between maximizing rele- 

vance (association strength of features with the response) and 

minimizing redundancy (association strength between pairs of 

features). It is a greedy algorithm (selecting one feature at a 

time), which takes into account only pairwise redundancies and 

neglects complementarity (joint association of features toward 

predicting the response). RELIEF is a feature-weighting algo- 

rithm, which promotes features that contribute to the separation 

of samples from different classes. It is conceptually related to 

margin maximization algorithms, and has been linked to the k- 

nearest-neighbor classifier [30]. Contrary to mRMR, RELIEF 

uses complementarity as an inherent part of the FS process. 

Finally, LLBFS aims to decompose the intractable, exhaustive 

combinatorial problem of FS into a set of locally linear problems 

through local learning. The original features are assigned fea- 

ture weights that denote their importance to the classification 
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problem, and the features with the maximal weights are then 

selected. LLBFS was conceived as an extension of RELIEF 

and relies on kernel density estimation and margin maximiza- 

tion concepts [27]. Overall, all four FS algorithms have shown 

promising results in machine learning applications over a wide 

range of different applications. 

The feature subsets were selected using a cross-validation 

(CV) approach (see Section III-E), using only the training data 

at each CV iteration. We repeated the CV process a total of ten 

times, where each time the M features (M = 132) for each FS 

algorithm appear in descending order of selection. Ideally, this 

feature ordering would be identical for all ten CV iterations, 

but in practice it is not. Hence, we need to have a strategy to 

select the features that appeared most often under each of the FS 

algorithms, to identify four feature subsets, one subset for each 

FS algorithm. Specifically, for each FS algorithm, we create 

an empty set S which will contain the indices of the features 

selected, and apply the following voting scheme. Feature indices 

are incrementally included, one at a time, in S. For each step  

K (K is a scalar taking values 1, . . . , M), we find the indices 

corresponding to the features selected in the 1, . . . ,  K search 

steps for all the ten CV repetitions. Then, we select the index 

which appears most frequently amongst these 10 K elements 

and which is also not already included in S. This index is now 

included as the Kth element in S. Ties are resolved by including 

the lowest index number. This entire process is repeated for each 

of the four FS algorithms. There is one final implementation 

issue that we need to address: contrary to the other three FS 

algorithms, LASSO may remove features in subsequent stages 

during its incremental FS search. Therefore, for LASSO, we 

repeated the tenfold CV process independently for each Kth 

step, interrogating the algorithm to provide the best-K features 

prior to the voting scheme explained before. 

Once the final selected feature subset S was decided for each 

FS algorithm, these features were input into the classifier in 

the subsequent mapping phase to obtain the final healthy/PD 

predictions from the dysphonia measures. 

 

D. Mapping Selected Dysphonia Features to the Response 

The preliminary correlation analysis of the features against 

the response presented before provides an indication of the as- 

sociation strength of each feature with the response. However, 

ultimately our aim is to develop a functional relationship f(X) 

= y, which maps the dysphonia features X = (x1 , . . .  ,xM ), 

where M is the number of features, to the response y. That is, we 

need a binary classifier that will use the dysphonia measures to 

discriminate healthy controls from PWP. 

We compared two widely used statistical machine-learning 

algorithms here: random forests (RF), and support vector ma- 

chines (SVM) [22]. RF is an ensemble technique, weighting 

the output of a large number of tree-structured prediction func- 

tions f (we used 500 trees). RF has a single tuning parameter: 

the number of features over which to search to construct each 

branch of each tree. However, this classifier has been found to 

be very robust to the choice of this parameter [32]. Following 

the suggestion of Breiman [32], we used the default setting (the 

square root of the number of input features), but also compared 

the results using half this default number (i.e. the square root 

of the number of input features, divided by two), and double 

this number (i.e. the square root of the number of input features, 

multiplied by two). 

SVMs attempt to construct an optimal separating hyperplane 

in the feature space, between the two classes in this binary deci- 

sion problem by maximizing a geometric margin between points 

from the two classes. In practical applications, data often cannot 

be linearly separated; in those cases, SVMs can use the kernel 

trick to transform the data into a higher dimensional space, and 

construct the separating hyperplane in that space [22]. There is 

extensive research, beyond the scope of this study, on how to 

work with nonlinearly separable data (see [22] and references 

therein). In general, this classifier requires the specification of 

some internal parameters, and SVMs are known to be partic- 

ularly sensitive to the values of these parameters [22]. Here, 

we used the LIBSVM implementation [33] and followed the 

suggestions of the developers of that implementation [34]: we 

linearly scaled each of the input features to lie in the range [–

1, 1], and used a Gaussian, radial basis function kernel. The 

determination of the optimal values of the kernel parameter γ 
and the penalty parameter C was decided using a grid search of 

possible values. We selected the pair (C,γ) that gave the low- 

est CV misclassification error (see Section III-E for details of 

CV scheme). Specifically, we searched over the grid (C,γ) de- 

fined by the product of the sets C = [2−5 , 2−13 , . . . ,  215 ], and 

γ = [2−15 , 2−13 , . . . ,  23 ]. Once the optimal parameter pair (C,γ) 

was determined, we trained and tested the classifier using these 

parameters. 

 

 

 

 
E. Classifier Validation 

Validation in this context aims at an estimate of the general- 

ization performance of the classification based on the dysphonia 

features, when presented with novel, previously unseen data. 

The tacit statistical assumption is that the new, unseen data will 

have a similar joint distribution to the data used to train the 

classifier. Most studies achieve this validation using either CV 

or bootstrap techniques [22]. 

In this study, we used a tenfold CV scheme, where the original 

data (263 phonations) were split into two subsets: a training 

subset consisting of 90% of the data (237 phonations), and a 

testing subset consisting of 10% of the data (26 phonations). 

The process was repeated a total of 100 times, where in each 

repetition the original dataset was randomly permuted prior to 

splitting into training and testing subsets. On each repetition, 

we computed the mean absolute classification error MAE = 

1/N      i   Q   ŷi     yi  , where ŷi  is the predicted response, yi  is 

the actual response for each ith entry in the training or testing 

subset, N is the number of phonations in the training or testing 

subset, and Q contains the indices of that set. Errors over the 

100 CV repetitions were averaged. Then, the performance of 

the model is (1 − MAE) · 100%. 
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TABLE II 

STATISTICAL ANALYSIS OF THE DYSPHONIA FEATURES 
 

 
 

IV. RESULTS 

A. Preliminary Statistical Survey 

Table II presents the ten dysphonia features most strongly 

associated with the response, sorted according to the absolute 

correlation coefficient value. It is interesting to note that some 

of the nonlinear dysphonia measures (RPDE, DFA) appear to be 

quite strongly associated with the response, and exhibit statisti- 

cally significant (p < 0.001) correlation, but the more recently 

proposed VFER measures, and MFCCs, are more strongly as- 

sociated. These findings give some initial confidence that the 

binary classification task of this study has a good chance of 

success. The statistical correlations between pairs of dysphonia 

measures (correlation matrix) appear in the online supplemen- 

tary material. 

 
B. Classification Stage: Mapping Dysphonia Features 

to the Response 

Table III summarizes comparable classification results in the 

literature, and those in the present study. All the studies cited in 

Table III used the exact feature data matrix computed in Little 

et al. [5], which comprised 31 subjects (195 phonations) and 22 

features. FS was conducted in all of these studies before mapping 

those (selected) features to the response. Our results are obtained 

using a larger database with 43 subjects (263 phonations), and 

a much larger number of features (132) based on the algorithms 

described in Tsanas et al. [11]. For a fair comparison with the 

original study of Little et al. [5], we have also applied the cross- 

validated classification algorithms of this paper to the optimal 

feature subset selected in that study. 

To date, the best results, across a wide range of classification 

algorithms, had a reported accuracy of around 93%, when using 

the same feature data as calculated in [5] (see Table III). Using 

the 132 features in this study with SVM leads to a noticeable 

TABLE III 

CLASSIFICATION ACCURACY OF STUDIES IN THE LITERATURE AND THIS PAPER 

 

 

 

Fig. 1. Comparison of out-of-sample mean performance results with confi- 
dence intervals (one standard deviation around the quoted mean performance) 
using the features selected by each of the four-feature selection algorithms. 
These results are computed using tenfold CV with 100 repetitions. For clarity, 
we present here only the first 30 steps. 

 
 

improvement in accuracy (97.7%) over these existing studies. 

However, these studies used considerably fewer features (at 

most 22). Therefore, this improved result could be affected by 

overfitting, and further accuracy gains may occur with fewer 

features. Thus, we computed the out of sample MAE results 

using the features selected by the four FS algorithms as the 

number of features is varied (see Fig. 1). In this way, we found 

that the globally optimal feature size (minimum MAE) is 22 
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TABLE IV 

SELECTED FEATURE SUBSETS AND CLASSIFICATION PERFORMANCE 
 

 

 

 
using RELIEF, but this is not a practically useful improvement 

over the MAE when using only ten features. Following the 

principle of parsimony then, we choose the least number of 

features giving the most accurate results according to mean 

performance (%). Therefore, our subsequent results use only 

the first ten features (see Table IV) for each FS algorithm (the 

features are presented in descending order of selection). 

The SVM also outperforms RF in this reduced feature space 

(for example, using the ten features from RELIEF in Table IV, 

RF achieves only 93.5% accuracy compared to 98.6% accu- 

racy with SVM). We remark that reducing the original 132- 

dimensional feature space can lead to an improvement in out-of- 

sample performance accuracy with both SVM and RF. Overall, 

these findings suggest that we can estimate whether someone 

has PD or is healthy from a single phonation, with almost 99% 

accuracy using only ten dysphonia features, a considerable im- 

provement over previous results. 

Finally, we examine whether the out-of-sample results using 

different FS algorithms (see Table IV) are statistically signif- 

icantly different. Specifically, we compared the distributions 

of the classification errors obtained using RELIEF against the 

distributions of classification errors with the alternative FS ap- 

proaches (Mann–Whitney rank sum test). In all three cases, the 

test rejected the null hypothesis of equal medians (p < 0.001); 

hence, the classification results using RELIEF-selected features 

are statistically significantly better from the results obtained 

using the other FS algorithms. 

V. DISCUSSION 

Decision support tools in biomedical applications are gener- 

ating considerable research interest not least because of their 

potential to improve healthcare provision. In this study, we have 

applied an extensive range of classical and novel speech signal 

processing algorithms for vocal pathology assessment in order 

to investigate how to discriminate PWP from healthy controls 

using sustained vowel phonations. This binary discrimination 

problem has attracted interest in recent years, with the best re- 

sults reporting approximately 93% classification accuracy on 

a subset of 22 features. Here, we demonstrated that we can 

achieve almost 99% accuracy using ten dysphonia measures. 

Compared to previous studies in this application, we have used 

an expanded speech database (which included all the 195 phona- 

tions in the original database and 68 additional phonations), and 

introduced many recently proposed dysphonia measures, which 

have not been previously used in this application (all the dys- 

phonia measures in this study were computed anew using the 

algorithms described in [11]). As in previous studies, we have 

used nonlinear SVMs for mapping features to the response, and 

also investigated RF. 

A novel contribution in this paper is to use four different FS 

algorithms to find a small subset of only ten features from the 

original 132. This led to an informative feature subset for the bi- 

nary classification task of this study, which may also tentatively 

suggest the most detectable characteristics of voice impairment 

in PD. All FS algorithms coped relatively well with the task, but 

RELIEF provided the subset with the lowest classification error. 

Recent research has demonstrated that RELIEF may work very 

well, in practice, in this kind of application because, internally, it 

incorporates a (nonlinear, nearest-neighbor) classifier [30]. The 

presence of highly correlated features (see the Excel file in the 

online supplementary material) indicates that LASSO may not 

be in its optimal setting (sparse environment with low feature 

correlations) to perform well. Thus, LASSO may be selecting 

some noisy features, which may not assist the discrimination of 

the two classes. Recently, we have found that feature comple- 

mentarity may be a required aspect of FS in a related applica- 

tion [31]. Therefore, mRMR, which does not take into account 

feature complementarity, may also not be the most appropriate 

algorithm in this application. These insights may help explain 

why RELIEF and LLBFS appear to work better in this domain. 

One interesting new finding is that of all the families of mea- 

sures tested here, MFCCs and SNR measures (VFER, HNR, 

GNE) appear to be consistently selected (see Table IV). The 

pathophysiological importance of SNR measures is well known: 

it is most likely the effect of amplified aeroacoustic noise due 

to increased airflow turbulence, ultimately generated by incom- 

plete vocal fold closure. However, the selection of MFCCs is 

somewhat surprising, because these measures are mainly sensi- 

tive to insufficient control in the steady placement of the articu- 

lators, which amplify specific acoustic resonances and attenuate 

others in the vocal tract. This may indicate that more research 

into the effect of PD on vocal tract articulatory impairment, 

even for sustained phonations, is required. By design, MFCCs 

are not highly correlated (see the correlation matrix in the online 



  Juni Khyat                                                                                                                 ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                                             Vol-12 Issue-07 No.03 July 2022  

Page | 420                                                                                                    Copyright @ 2022 Author 

 

supplementary material), and provide complementary informa- 

tion regarding characteristics of the speech signal. Combined 

with the fact that some MFCCs are relatively highly correlated 

with the response (see Table II), provides a highly plausible ex- 

planation for why RELIEF tends to select these features. Com- 

pared to the original study of Little et al. [5] where the selected 

feature subset comprised HNR, RPDE, DFA, and PPE, RELIEF 

consistently selected the new dysphonia measures presented 

here. LLBFS (the FS algorithm which resulted in the second 

best performance) selected RPDE, HNR, and DFA with lower 

rank (7–9) compared to the new features described here. These 

findings justify the higher classification accuracy obtained in 

this study in comparison to previous studies. 

In our experiments, SVM has a clear edge over RF for this 

particular application (see Table III). We also verified Breiman’s 

observation [32] that modifying the RF tuning parameter (the 

number of features over which to search to construct each branch 

of each tree) does not produce markedly different results in the 

overall RF classification accuracy. Some empirical studies have 

compared SVM and RF with no clear verdict about overall su- 

periority of either approach [39], although it is well established 

that both classifiers perform well in general [22]. It would be in- 

teresting to investigate the reasons that RF perform noticeably 

worse than SVM in this application. As Statnikov et al. [40] 

remark, this undertaking is not straightforward, and requires ex- 

tensive empirical and theoretical studies to explain the perfor- 

mance differences observed across different studies for SVMs 

and RF [36]. Moreover, it may be worth taking into account the 

confidence of the classifiers’ decisions. Both SVMs and RF can 

be arranged to produce probabilistic outputs, and it would be 

possible to introduce an additional “Don’t know” class if the 

probability of the class assignments was below some prespeci- 

fied threshold. In a practical setting, assigning probabilities to an 

automatic decision support tool would aid clinicians in deciding 

upon further actions. 

It has recently been suggested that it may be useful to partition 

the data according to gender in a similar application (mapping 

the dysphonia measures to a clinical metric that quantifies av- 

erage Parkinson’s disease symptom severity [11]). Here, this 

would require an entirely different dysphonia feature subset 

and classifier for males versus females. However, reducing the 

available data by splitting the original dataset into two subsets 

diminishes the statistical power of the performance evaluations. 

When we attempted data partitioning according to gender with 

this data, we obtained reduced performance accuracy. We em- 

phasize that with more data, it is possible that partitioning (which 

may or may not be limited to gender partitioning) could lead 

to interesting insights. For example, data partitioning by gender 

could provide insight into the most useful features for males 

versus females with regard to the discrimination of PWP from 

healthy controls, as in Tsanas et al. [11]. 

We envisage this study as a step toward the larger goal of tech- 

nologies for diagnostic decision support in PD. The algorithms 

in this study appear to be very effective for discriminating PWP 

from healthy controls on the basis of extensive CV tests. Con- 

ceptually, CV provides an estimate of the performance of the 

model on new data, assuming that the new dataset is drawn from 

the same distribution as the dataset used to train the classifier. 

Therefore, the findings of this study might need to be further val- 

idated using independent datasets before this technology could 

be used as a diagnostic decision support tool. We are working 

toward collecting new datasets toward this aim. Furthermore, we 

remark that the healthy subjects in this study did not have any 

pathological vocal symptoms when assessed by expert speech 

scientists. A study involving a cohort of subjects with PD-like 

vocal symptoms, but without PD, would further validate the ap- 

plicability of these findings. Although running speech has been 

used in other studies [7], the collection of sustained vowels in 

controlled circumstances reduces intraspeaker variability and 

confounding linguistic factors, and may lead to better results. 

Nevertheless, future studies could investigate the combination 

of both approaches, extracting information from both sustained 

vowels and running speech. It would be interesting to use a 

very large database including voices from diverse disorders, 

where the use of sophisticated dysphonia measures might help 

determine the underlying pathology amongst a wide set of pos- 

sible diagnoses. Also, the data in this study are collected in an 

acoustically controlled environment; we are currently working 

to extend these findings to more realistic acoustic setups, which 

would extend the proposed technology for use in more practical 

settings. Finally, future work could incorporate additional infor- 

mation from physical models of voice production mechanisms, 

for example to improve the accuracy of jitter, shimmer and HNR 

estimates using glottal source signals obtained from the voice 

recordings. 
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