

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-12 Issue-06 No.03 June 2022

Page | 38 Copyright @ 2022 Author

SPEED EFFICIENT VLSI ARCHITECTURE OF TRUNCATION AND ROUNDING

BASED SCALABLE APPROXIMATE MULTIPLIER

Kumbidi Tarpana Research Scholar, Sri Sivani College of Engineering, Chilakapalem, Andhra

Pradesh 532402

Dr. V.Suryanarayana Associate professor, Sri Sivani College of Engineering, Chilakapalem,

Andhra Pradesh 532402

ABSTRACT

Modern society is advancing in its pursuit of the minimum area challenge. Traditional designs

use a large number of efficient structures in order to include the maximum speed. Because of

their size, the great majority of constructions will have the same multiplier as the basic blocks,

but will run slower. In real life, not all applications, like image processing and digital signal

processing, need exact results. Approximative multipliers are utilised as a consequence. Based on

these two things we introduce the Truncation-And-Round-Depending Scalable Approximate

Multiplier (TOSAM), which decreases the number of partial products by rounding each input

operand based on its leading one-bit location. Shifts, adds, and short fixed-width multiplication

operations are used in the proposed architecture to execute multiplication. This is much faster

than traditional multipliers. To increase overall accuracy, the multiplication part's input operands

are rounded to the closest even value. Because input operands are reduced in accordance with

their leading one-bit positions, operand width has only a little impact on accuracy, and the

multiplier is scalable. The design parameter has undergone significant improvements (less area).

Index terms: carry look ahead adder, arithmetic unit, leading one detector, shift unit,

approximate absolute unit, truncated unit and sign detector.

1. INTRODUCTION

A multiplication procedure is often divided into three phases. The input operands are used to

construct partial products in the first phase. Imperfect goods increase in the second phase until

only two rows remain. Using a (rapid) adder, the last two rows are totaled in the final step. The

approximation may be applied to each of these phases. In the first phase, approximation may be

used to cut down on the quantity of partial products or the complexity of their creation. In the

second stage of multiplication Approximation can be used to lower the latency or power use of

the reduction levels. One of these ways is to use an approximation compressor. The design of the

adder used in the last step of multiplying has a big effect on how long the process takes and how

much power it uses. As a result, in the last step, an approximation adder may be used to lower the

multiplier's power consumption. In this paper, we give a way to figure out how many partial

products there are. The suggested approximation method shortens input operands to h or t bits,

depending on where their leading bit is, and these shortened values are used for multiplication

and addition. To make the reduction levels less slow or use less power, approximation may be

employed. Approximation compressors are one of these ways. The design of the adder used in

the last step of multiplying has a big effect on how long the operation takes and how much power

it needs. As a result, in the last step, an approximation adder may be used to lower the

multiplier's power consumption. In this work, we show how to figure out how many partial

products there are. The proposed approximation method cuts the input operands down to h or t

bits, depending on where their leading bit is, and then uses these truncated values for

multiplication and addition. Approximation can be used to make the reduction levels run faster or

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-12 Issue-06 No.03 June 2022

Page | 39 Copyright @ 2022 Author

use less power. One of these ways is to use an approximation compressor. The design of the

adder used in the last step of multiplying has a big effect on how long the operation takes and

how much power it needs. As a result, in the last step, an approximation adder may be used to

lower the multiplier's power consumption.

2. LITERATURE SURVEY

At multiple levels, exposing approximation computing advancements: From a behavioral

to a gate-level perspective, authored by S. Xu and B. C. Schafer Many applications have a high

tolerance for computational imprecision. Image processing, multimedia, and machine learning

are a few examples. Circuits that consume less power, have a smaller footprint, and perform

better might make advantage of these faults. Approximation optimizations in VLSI design were

often restricted to a certain abstraction level or stage in previous studies. This research shows that

a technique that uses more than one level is much better. As a consequence, different

optimizations are used at each level in this investigation giving higher results when compared to

single-level approaches. Furthermore, approximation computing is strongly dependent on data.

We analyse the stability of approximation circuits in this study, The circuit is set up to handle a

certain amount of data, but the actual load is not the same as what was expected. Researchers in

the past have mostly focused on a single input data distribution because they thought it was a

good representation of the whole workload. The findings suggest that our technique can find

better and more optimum designs than earlier studies, as well as circuits that are more durable

under changing workload scenarios.

3. PROPOSED APPROXIMATE MULTIPLIER TOSAM

Each integer positive (N) may be represented as

where k is the leading bit's location and xi is the N's i-th bit Subtraction of 2k from (1) yields

where X is an integer fraction between 1.0 and 2.0 (2) may be used to determine the outcome of

multiplying A by B.

Because XA and XB have the same width as A and B, calculating XA and XB is quick and

resource-intensive. We suggest determining this term's estimated value using the fractional

portions of XA and XB. In the rest of this work, the fractional portion of X is represented as Y

derived from

Consider the situation when X = (1.1101) 2. Y equals X in this scenario (0.1101) 2. We split

the range (0.0–1.0) into S equal segments to compute Y, where S is a power of two denoted by.

h is a random positive integer that we use as one of our design factors. Each segment's length

is plainly equal to 1/S. We suggest to construct an approximation of Y's value as

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-12 Issue-06 No.03 June 2022

Page | 40 Copyright @ 2022 Author

Fig. 1 depicts the estimated quantities of Y for the instance when S equals 4 to provide a

better illustration. To find YAPX, just the h most relevant parts of Y must be taken into account.

When S = 4(h = 2), for example, the two most important bits of Y are zero, this indicates that

0 Y 1/4.

Consequently, we select 1/8 = (0.001)2 as YAPX. When the Two of Y's most important bits

are "10," indicating that 2/4 Y 3/4, YAPX is roughly equivalent to 5/8 = (0.1012). To put it

another way, YAPX is created by truncating Y to h bits and adding a "1" bit. Consequently,

YAPX will have a width of h + 1 bits. Utilizing (4), (3) is rewritten as

Fig.1. Dot diagram of term 1+(YA)t +(YB)t +(YA)APX×(YB)APX where t = 7 and h = 3.

Now, the approximate value of (7) may be written as

To enhance computation performance, we truncate YA and YB to t bits, which we will refer to

throughout this study as (YA)t and (YB)t. Consequently, we amend (8) as follows:

where (YA)APX ((YB)APX's width is h + 1 bits. To aid clarity, Fig. 2 compares the suggested

method's dot diagram for the case where t = 7 and h = 3 to that of an accurate 16 -bit multiplier.

The "1" in the formula 1+(YA)t +(YB)t + (YA)APX (YB)APX is represented by the green

square. Orange circles represent the partial products of (YA)APX(YB)APX, Purple triangles

indicate the component portions of (YA)t and (YB)t, respectively. Gray circles and triangles are

excluded and disregarded from the computations. As illustrated in Fig. 2, the eventual outcome

of the accurate 16-bit multiplier needs the inclusion of 256 partial products, while the suggested

technique preserves just 31 partial products. As the bit length of the multiplier's input operands

rises, this reduction rate will increase. Fig. 3 illustrates the methods for multiplying A by B

when t = 7 and h = 3 as an example. In the remainder of this study, our suggested structures are

denoted by TOSAM (X, Y), where X and Y correspond to h and t.

Based on factors t and h, a proposed method's accuracy may vary greatly. To attain near-high

precision with acceptable speed and power, t and h will be related. Finally, Multiplying

unsigned operands is recommended. C1 must determine the absolute value of the input

operands, multiply them using the given approach, and then adjust the sign of the final output.

Absolute value calculations may delay down. This necessitates the employment of the approach

outlined in.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-12 Issue-06 No.03 June 2022

Page | 41 Copyright @ 2022 Author

Fig.2 A = 11761 and B = 2482 is a 16-bit TOSAM(3, 7) example using A = 11761 and B = 2482.

The approximate result [(A B)APX] is 28 901 376, but the precise result [(A B)Exact] is 29 190

802. In this instance, the absolute error is 289 426, which corresponds to around 0.99 percent of

the actual result (theerror is less than 1 percent in this case).

Fig.3. Block diagram of the proposed approximate signed multiplier.

Hardware Implementation

The suggested signed approximation multiplier's block diagram is shown in Figure 4. The

Approximate Absolute Unit, a method similar to, is used to determine the approximate absolute

value of the input operands (|A|app, |B|app). If the input is negative, the bits of this unit are

reversed; otherwise, they remain unchanged. The Leading-One Detector Unit receives |A|app and

|B|app, and the algorithm calculates the locations of their leading one bits.

If I might be either application A or application B Because just one bit of the signal K is "1," it

signifies that the input location has been advanced by one bit. kA and kB signals may be

produced using a lookup table using KA and KB signals (7). Figure 3 shows the Leading-One

Detector Unit's 8-bit input design. Imagine this: |A|app = (011001)2, KA = (010000)2, kA =

(100)2 = 4. The Truncation Unit receives |A|app, |B|app, KA, and KB to produce (YA)t and

(YB)t. Input and output are I and (Y)t.

The Arithmetic Unit then solves 1 + (YA)t + (YB)t + (YA)APX (YB)APX using (YA)t and

(YB)t. The rightmost bits of (YA)t and (YB)t are always "1," just like (YA)APX and (YB)APX.

As a consequence, no additional hardware is required to generate (YA)APX and (YB)APX

signals since they may be generated with simple wiring.

accuracy levels of TOSAM

The Arithmetic Unit's output is moved to the left by kA + kB by the Shift Unit. This makes

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-12 Issue-06 No.03 June 2022

Page | 42 Copyright @ 2022 Author

the term 2kA + kB (1+(YA)t + (YB)t + (YA)APX (YB)APX). [Also see (9)] Sign and Zero

Detector Unit output sign is determined by multiplier input operands. If one input is zero, so is

the output. Approximate Absolute Unit, Sign and Zero Detector Units must be changed for

unsigned multipliers.Figure 6 shows how the partial product drop levels change depending on

how the machine is running. In the last level, a fast 9 -bit adder is used. Depending on the

operating mode, the inputs of a transmission gate (TG) are set to "0" to slow down switching.

In T2 mode, only purple partial products are gathered and all 9 -bit adder inputs are "0." The

operator is used to set the 10 least-important bits of the result to "0."

Fig. 4. TOSAM has three separate operation modes with customizable accuracy levels.

Transmitting TGs and purple stars creates the four most important output bits. In T6 mode, only

the green and purple partial products are created. Orange adders are powered by a power gate.

Orange adder inputs also get "0" In T6 mode, two orange circles in LEVEL1's eighth column

should be "0." Six least-important bits are set to "0." Green stars produce four intermediate

output bits, and a 9-bit adder delivers the four most critical bits. In T9 mode, every component is

turned on. The TGs process the orange stars to produce the output's five least significant bits,

while a 9-bit adder creates the remaining bits. Depending on the operating mode, (Y A)APX and

(Y B)APX should be rounded (set to "1"). Simply OR the operating mode bit. Logical OR sets

(Y A)APX and (Y B)APX to "1" when T6 is "1."

Carry Carry Look Ahead Adder

Carry-look-ahead adders (CLA) are digital logic adders. Carry-look ahead adders improve

performance by minimising time spent locating carry bits. The carry bit and the sum bit are

computed simultaneously in the ripple-carry adder (RCA). Before starting its own sum bit and

carry bit computations, each stage must wait for the previous stage's carry bit to be computed.

One or more carry bits are calculated in the carry-look-ahead adder before calculating the total

number of digits. This makes it faster to figure out the result of the adder's higher-value bits. The

first phase is defined by the variables carry generate Gi and carry propagate Pi.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-12 Issue-06 No.03 June 2022

Page | 43 Copyright @ 2022 Author

Then the next step is carry generation

The last step is post processing sum output t can be expressed as

Fig 5: bit carry look ahead adder Fig 6: proposed arithmetic unit

4. Results

RTL SCHEMATIC: The register transfer level (RTL) schematic denotes the architecture's

blueprint and is used to compare perfect architecture that we must create from the intended

architecture. The hdl language is used to transform the architecture's description or summary into

the functioning summary using a coding language like verilog or vhdl. The internal connection

blocks are even specified in the RTL schematic for easier analysis. Below is a schematic

representation of the design's RTL implementation.

Fig7: RTL schematic of proposed TOSAM

TECHNOLOGY SCHEMATIC: With the LUT area parameter being used to estimate

architecture design in VLSI, this diagram shows the technology's architecture in LUT format.

The FPGA's LUTs, which are square units, represent the code's memory allocation.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-12 Issue-06 No.03 June 2022

Page | 44 Copyright @ 2022 Author

Fig8: view technology schematic of proposed TOSAM

SIMULATION:-Unlike the schematic, which only verifies the connections and blocks of a

circuit, a simulation verifies the circuit's workings. Waveforms are the only form of output that

can be viewed in the simulation window because it is launched by shifting from implementation

to simulation. Since it can support multiple radix number systems, this is a useful feature.

Fig 9: Simulated waveforms of proposed TOSAM

PARAMETERS: Consider that in VLSI, the factors considered are area, delay, and power; using

these metricsIt's possible to make comparisons between several designs. XILINX 14.7 is used to

acquire the parameter, while verilog is used as the HDL language.

Table1: parameter comparison table

GRAPH: The graph is a graphical representation of the represented data, allowing for easy

comparative estimation. This graph depicts a comparison between the latency of two designs on a

nanosecond scale.

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-12 Issue-06 No.03 June 2022

Page | 45 Copyright @ 2022 Author

Fig10: lut comparison bar graph

Fig11: delay comparison bar graph

Fig12: power comparison bar graph

CONCLUSION

In this project, we presented a high-speed approximation multiplier with input operands trimmed

to two unique lengths, t and h. The proposed multiplier outperformed current approximation in

terms of how fast they work.The suggested 16-bit multiplier meets the speed requirements. Upon

implementation of the suggested design, the space decreases from 370 to 357 square feet.

Therefore, the suggested design is constructed and simulated using XILINX14.5 ISE and verilog

HDL language, and the parameters are observed in spartan6 lowpower. Also, the suggested

multiplier's great precision makes it an excellent candidate for use in image processing and

classification applications. This paper proposes a high-speed, truncated and rounding-based,

scalable 16-by-16 multiplier that is suitable for floating-point numbers. We use TOSAM

algorithm to obtain high speed. This approximate computing is a calculation approach that

delivers a potentially erroneous and it may be used in instances when an estimate is sufficient

rather than a guaranteed correct solution. In the future, these multipliers will be used in the

Juni Khyat ISSN: 2278-4632

(UGC Care Group I Listed Journal) Vol-12 Issue-06 No.03 June 2022

Page | 46 Copyright @ 2022 Author

majority of designs where precision is not required, such as image processing filters,

cryptography, etc.

REFERENCES

[1] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park, and N. S. Kim, “Energy-efficient

approximate multiplication for digital signal processing and classification applications,” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 6, pp. 1180–1184, Jun. 2015.

[2] S. Xu and B. C. Schafer, “Exposing approximate computing optimizations at different levels:

From behavioral to gate-level,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no.

11, pp. 3077–3088, Nov. 2017.

[3] A. Raghunathan and K. Roy, “Approximate computing: Energyefficient computing with

good-enough results,” in Proc. IEEE 19th Int. On-Line Test. Symp. (IOLTS), Chania, Greece, Jul.

2013, p. 258.

[4] D. Jeon, “Energy-efficient digital signal processing hardware design,” Ph.D. dissertation,

Dept. Elect. Eng., Michigan Univ., Ann Arbor, MI, USA, 2014.

[5] S. Vahdat, M. Kamal, A. Afzali-Kusha, and M. Pedram, “LETAM: A low energy truncation-

based approximate multiplier,” Comput. Elect. Eng., vol. 63, pp. 1–17, Oct. 2017.

[6] S. Hashemi, R. I. Bahar, and S. Reda, “DRUM: A dynamic range unbiased multiplier for

approximate applications,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD),

Austin, TX, USA, Nov. 2015, pp. 418–425.

[7] R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha, and M. Pedram, “RoBa multiplier:

A rounding-based approximate multiplier for high-speed yet energy-efficient digital signal

processing,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 2, pp. 393–401, Feb.

2017.

[8] V. Leon, G. Zervakis, D. Soudris, and K. Pekmestzi, “Approximate hybrid high radix

encoding for energy-efficient inexact multipliers,” IEEE Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 26, no. 3, pp. 421–430, Mar. 2018.

[9] O. Akbari, M. Kamal, A. Afzali-Kusha, and M. Pedram, “Dual-quality 4:2 compressors for

utilizing in dynamic accuracy configurable multipliers,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 25, no. 4, pp. 1352–1361, Apr. 2017.

[10] M. Ha and S. Lee, “Multipliers with approximate 4–2 compressors and error recovery

modules,” IEEE Embedded Syst. Lett., vol. 10, no. 1, pp. 6–9, Mar. 2018.

