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Abstract—A revocable identity-based encryption (RIBE) 

provides an efficient revocation method in IBE that a 

trusted authority periodically broadcasts an update key for 

nonrevoked users and a user can decrypt a ciphertext if he 

is not revoked in the update key. Boldyreva, Goyal, and 

Kumar (CCS 2008) defined RIBE and proposed an RIBE 

scheme that uses a treebased revocation encryption scheme 

to revoke users’ private keys. In this paper, we devise a new 

technique for RIBE and propose RIBE schemes with a 

constant number of private key elements. We achieve the 

following results. We first devise a new technique for RIBE 

that combines a hierarchical IBE (HIBE) scheme and a 

public-key broadcast encryption (PKBE) scheme using 

multilinear maps. In contrast to the previous technique for 

RIBE, our technique uses a PKBE scheme in bilinear maps 

for revocation to achieve short private keys and update 

keys. Following our new technique for RIBE, we propose 

an RIBE scheme in three-leveled multilinear maps that 

combines the HIBE scheme of Boneh and Boyen 

(EUROCRYPT 2004) and the PKBE scheme of Boneh, 

Gentry, and Waters (CRYPTO 2005). The private key and 

update key of our scheme possess a constant number of 

group elements. Next, we propose another RIBE scheme 

with reduced public parameters and short keys by 

combining the HIBE scheme of Boneh and Boyen and the 

PKBE scheme of Boneh, Waters, and Zhandry (CRYPTO 

2014), which uses multilinear maps. Compared with our 

first RIBE scheme, our second RIBE scheme requires high-

leveled multilinear maps. 
Index Terms—Identity-based encryption, key revocation, 

broadcast encryption, multilinear maps. 
I. INTRODUCTION 

ROVIDING an efficient revocation mechanism in 

cryptosystems for a large number of users is very 

important since it can prevent a user from accessing 

sensitive data in cryptosystems by revoking the private 

key of a user when the private key is revealed or 

expired. In public-key encryption (PKE), which employs 

the public-key infrastructure (PKI), there are many 

studies that deal with the certificate revocation problem 

[1]–[4]. In identity-based encryption (IBE) [5], [6], a 

natural approach for this revocation problem is that 

atrusted authority periodically renews a user’s private 

key for his identity at a current time period and then a 

sender creates a ciphertext for both a receiver identity 

and a current time period. However, this approach has 

some problems: the trusted authority should always be 

online to renew the user’s private keys, users should 

always renew their private keys regardless of whether 

their private keys are revoked, and a secure channel 

should be established between the trusted authority and 

a user to transmit a renewed private key. 

An IBE scheme that provides an efficient revocation 

mechanism (RIBE) was proposed by Boldyrevaet al. 

[7]. In RIBE, each user receives a (long-term) private 

key SKI D for his identity I D from a trusted authority, 

and the trusted authority periodically broadcasts an 

update key UKT,Rat a current time T by including a 

revoked identity set R. If a user has a private key SKI D 

that is not revoked by the revoked identity set R of the 

update key UKT,R, then he can derive his (short-term) 

decryption key DKID,Tfrom his private key SKI D and the 

update key UKT,R. This decryption key can be used to 

decrypt a ciphertext CTI D,Tfor a receiver identity I D and 

a time period T. The main advantage of this approach is 

that the trusted authority can be offline because the 

authority only need to broadcast the update key 

periodically. To build an RIBE scheme, Boldyrevaet al. 

[7] used the tree-based revocation encryption scheme of 

Naoret al. [8] for revocation and the ABE scheme of 

Sahai and Waters [9] for encryption of an identity and a 

time period. Other RIBE schemes also follow this 

design approach that uses the tree-based revocation 

encryption scheme for revocation [10]–[12]. This design 

approach, however, has an inherent limitation in that the 

number of private key elements and update key elements 

cannot be constant since a private key is associated with 

path nodes in a tree and an update key is associated with 

covering nodes in the tree [8]. Therefore, in this paper, 

we ask the following questions about RIBE: “Can we 

build an RIBE scheme with a constant number of private 

key elements and update key elements? Can we devise a 

new technique for efficient RIBE that is different from 

the previous approach?” 

A. Our Results 

In this work, we give affirmative answers to both of 

the above questions. That is, we first devise a new 

technique for RIBE that is quite different from the 

previous technique, and we propose two RIBE schemes 

P 
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with a constant number of private key elements. The 

following is our results: 

New Techniques for Revocable IBE: Previous RIBE 

schemes [7], [10], [11] use IBE (or ABE) schemes for 

the main encryption functionality and the tree-based 

revocation encryption of Naoret al. [8] for the 

revocation functionality. As mentioned, the inherent 

limitation of the tree-based revocation encryption 

scheme is that the number of private key elements and 

update key elements cannot be constant. To achieve an 

RIBE scheme with a constant number of private key 

elements and update key elements, we observe that 

PKBE schemes [13], [14] in bilinear groups can be 

directly used for delivering a partial key of IBE to non-

revoked users because these broadcast schemes have 

short private keys and short ciphertexts. That is, the 

private key SKI D,Tof a two-level HIBE scheme with an 

identity I D and a time period T is divided into two 

partial keys 
SK

I Dand 
SK

T. A user’s actual key consists 

of SKI Dand the private key of PKBE, and a trusted 

authority broadcasts an update key UKT,Rthat is the 

encryption of SKT, which excludes revoked users R. If 

the user is not revoked, then he can derive SKI D,Tof 

HIBE combining SKI Din his actual key and SKTin UKT,R. 

However, this simple RIBE scheme is vulnerable under 

a simple attack–that is, if an adversary corrupts a user I 

D at time T , then he can obtain a partial key SKI Dand a 

PKBE key for I D. The adversary then can decrypt a 

previous ciphertext CTI D,Tsuch that T <Tby obtaining a 

partial key SKTfrom UKT,Rsince the PKBE key that was 

obtained at time Tcan still be applied to decrypt UKT,R at 

time T. To overcome the simple attack, we set the 

private key SK of RIBE by binding the private key of 

HIBE and the private key of PKBE, and set the update 

key UK of RIBE by binding the private key of HIBE 

and the ciphertext of PKBE. However, this RIBE 

scheme possesses another problem–a decryption key 

derived from a private key and an update key by 

performing a pairing operation cannot be used to decrypt 

a ciphertext since the decryption key is the result of the 

pairing operation in bilinear groups. To solve this new 

problem, we use multilinear maps that were recently 

proposed by Garg et al. [15]. The detailed techniques 

are discussed below in this section. 

RIBE With Shorter Private Keys and Update Keys: 

We first propose an RIBE scheme with a constant 

number of private key elements and update key elements 

by applying our new technique for RIBE on the three-

leveled multilinear maps. For a concrete RIBE 

construction, we use the PKBE scheme of Boneh, 

Gentry, and Waters (BGW-PKBE) [13] for revocation 

and the HIBE scheme of Bonehet al. (BB-HIBE) [16] 

for encryption of an identity I D and a time T. The 

public parameters, the private key, the update key, and 

the ciphertext of our RIBE scheme just consist of O(N + 

λ), O(1), O(1), and O(1) group elements, respectively. As 

far as we know, our RIBE scheme is the first one that 

achieves a constant number of private key elements and 

update key elements. To prove the security of our RIBE 

scheme, we introduce a new complexity assumption 

called the Multilinear Diffie-Hellman Exponent 

(MDHE) assumption that is a natural multilinear version 

of the Bilinear Diffie-Hellman Exponent (BDHE) 

assumption of Bonehet al. [13]. We prove the security 

of our scheme in the selective revocation list model, 

where an adversary should initially submit a challenge 

identity, a challenge time, and the revoked set of 

identities at the challenge time. 

RIBE With Reduced Pubic Parameters: The number 

of group elements in the public parameters of our first 

RIBE scheme is proportional to the maximum number 

of users. To overcome this problem, we propose another 

RIBE scheme with reduced public parameters on O(log 

N)leveled multilinear maps by employing the PKBE 

scheme of Bonehet al. (BWZ-PKBE) [17]. The 

interesting feature of the BWZ-PKBE scheme is that the 

public key just consists of O(log N) group elements 

whereas the public key of the BGW-PKBE scheme [13] 

consists of O(N) group elements. Additionally, the 

BWZ-PKBE scheme has a similar structure to the 

BGW-PKBE scheme except that it uses O(log N)-
leveled multilinear maps. Because of this structural 

similarity, we can build an RIBE scheme based on the 

BWZ-PKBE scheme by following our new technique 

for RIBE. We prove the security of our second RIBE 

scheme in the selective revocation list model by using 

the compressed MDHE (cMDHE) assumption. Although 

the number of group elements in public parameters is 

reduced, our second RIBE scheme is not a truly identity-

based one since the maximum size of the receiver set is 

restricted to being polynomial in the BWZ-PKBE 

scheme. A detailed comparison between our RIBE 

schemes and other RIBE schemes is given in Table I. 

Note that the bit size of private keys and update keys in 

our RIBE schemes is not constant since the bit size of 

group elements in leveled multilinear maps is not 

constant [32]. 

B. Our Technique 

To devise an RIBE scheme with a constant number of 

private key elements and update key elements, we use 

the BGW-PKBE scheme [13] for revocation instead of 

using the revocation encryption of Naoret al. [8]. The 

revocation encryption of the NNL framework mainly 

uses a tree for broadcasting, and it is hard to provide a 

constant number of RIBE private key elements since the 

private key of the NNL framework is associated with 

path nodes in the tree and the update key is associated 

with subset covering nodes in the tree [8]. The BGW-

PKBE scheme, by contrast, can provide a constant 
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number of RIBE private key elements since the PKBE 

scheme has a constant number of private key elements. 

For our RIBE construction, we use the BGW-PKBE 

scheme [13] for revocation and the two-level HIBE 

scheme of Boneh and Boyen [16] for encryption of an 

identity I D and a time periodT. As mentioned before, 

the simple approach is vulnerable under a simple attack. 

To address this problem, we first set the RIBE private 

key as SKI D = g
αdγ

F(I D)r1, g
r1

, which is a careful 

combination of the PKBE private key 

SKBE,d= gαdγand the HIBE private key SKHIBE,I D = (ga 

F(I D)r1, g
r1), where an index d is associated with the 

identity I D and F(·) is a function from identities to 

group elements. That is, we replace the master key part 

g
a 

of the HIBE private key component with the PKBE 

private key component. Next, we set the RIBE update 

key as 

UKT,R 
r2, g

r2
, which 

is a careful combination of the

 PKBE ciphertext 

CTHIBE private keyBE
,R =SKgβHI BE,(gγ,T=j

∈Ng\
aR

Hg(NT+)1
r
−2

,jg)β
r2whereand Rtheis 

a revocation set, T is an update time period, and H(·) is a 

function from times to group elements. That is, we 

replace the master key part g
a 

of the HIBE private key 

component with the PKBE ciphertext component. If a 

user with a private key SKI D is not revoked in an update 

key UKT,Rat a time T, then he can derive a decryption 

key DKID,T= g
αN+1β

F(I D)r1 
H(T)r2, gr1, gr2

for his identity I 

D and the time T. This decryption key can be used to 

decrypt a ciphertext 

CTI D,T= e(g
αN+1, g

β
)s · M, gs, F(I D)s, H(T)s

. 

However, there is a major problem with this idea. 

That is, a session key that is derived from the ciphertext 

and the private key of PKBE in bilinear groups is an 

element in GT , and this session key cannot be used for 

pairing in bilinear groups. This means that the RIBE 

decryption key DKID,T, which is related with the session 

key of PKBE, cannot be used to decrypt a RIBE 

ciphertext CTI D,Tsince the pairing operation can no 

longer be applicable. To address this problem, we use 

three-leveled multilinear maps [15]. Note that bilinear 

maps correspond to two-leveled multilinear maps. In our 

RIBE scheme, which uses three-leveled multilinear 

maps, a private key SKI D is in G1, an update key UKT,Ris 

in G1, a decryption key DKID,Tis in G2, and a ciphertext 

CTI D,Tis in G1. The ciphertext CTI D,Tin G1 and the 

decryption key DKID,Tin G2 can be used to derive a 

session key by using a bilinear map e1,2(−,−), which is 

additionally provided by three-leveled multilinear maps. 

Therefore, we can build an RIBE scheme with a 

constant number of private key elements and update key 

elements from three-leveled multilinear maps. This 

technique also applies to the BWZ-PKBE scheme [17]. 

C. Related Work 

Identity-Based Encryption and Its Extensions: IBE, 

introduced by Shamir [5], can solve the key 

management problem of PKE since it uses an identity 

string as a public key instead of using a random value. 

The first IBE scheme was proposed by Boneh and 

Franklin [6] by using bilinear groups, and many other 

IBE schemes have been proposed in bilinear maps [16], 

[19]. Another importance of IBE is that it has many 

surprising extensions such as hierarchical IBE (HIBE), 

attribute-based encryption (ABE), predicate encryption 

(PE), and functional encryption (FE). HIBEwas 

introduced by Horwitz and Lynn [20] and it additionally 

provides private key delegation functionality [16], [21]. 

ABE was introduced by Sahai and Waters [9] and it can 

provide access controls on ciphertexts by associating a 

ciphertext with attributes and a private key with a policy 

[22]. PE can provide searches on encrypted data by 

hiding attributes in ciphertexts [23]. Recently, the 

concept of FE, which includes all the extensions of IBE 

was introduced by Bonehet al. [24], and it was shown 

that FE schemes for general circuits can be constructed 

[25]. 

TABLE I 
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Revocation in IBE: As mentioned, providing an 

efficient revocation mechanism that can revoke a user 

whose private key is revealed is a very important issue 

in cryptosystems. In PKE, which employs the public-

key infrastructure (PKI), the certificate revocation 

problem was widely studied [1]–[4]. In IBE, there are 

some works that deal with the key revocation problem 

[6], [7], [10], [11], [26]. We can categorize the 

revocation methods for IBE in the following two ways. 

In the first revocation method, a trusted authority 

periodically broadcasts a revoked user set R, and a 

sender creates a ciphertext by additionally including a 

receiver set S that excludes the revoked user set R [26]. 

That is, this method conceptually combines an IBE 

scheme with a PKBE scheme. Though this method is 

simple to construct and does not require a user to update 

his private key, the sender should check the validity of 

the revoked list and the sender has the responsibility for 

the revocation. Ideally, the sender should proceed as in 

any IBE scheme and encrypt a message without 

worrying about potential revoked users. 

With the second revocation method, a sender creates a 

ciphertext for a receiver identity I D and a time T, and a 

receiver periodically updates his private key on a time T 

from a trusted authority if he is not revoked at the time 

T. That is, this method can revoke a user by preventing 

the user from obtaining his key components from the 

authority. 

Boneh and Franklin [6] proposed a revocable IBE 

scheme by representing a user’s identity as I DT with a 

user periodically receiving his private key at a time T by 

communicating with the authority. However, this RIBE 

scheme is impractical for a large number of users since 

all users should be connected to the authority to receive 

their private keys. To improve the efficiency of RIBE, 

Boldyrevaet al. [7] proposed a new RIBE scheme, in 

which a trusted authority periodically broadcasts an 

update key for a time T and non-revoked users by using 

the revocation encryption of Naoret al. [8]. After that, 

many other RIBE schemes were proposed by following 

this design principle [10]–[12], [18]. The key revocation 

is also an important issue in ABE. Sahai et al. [27] 

proposed a revocable-storage ABE (RS-ABE) scheme 

for cloud storage by extending the idea of RIBE 

schemes, and Lee et al. [28] proposed an improved RS-

ABE scheme and a revocable-storage PE scheme. 

II. PRELIMINARIES 

In this subsection, we first define revocable identity-

based encryption (RIBE) and its security model, and 

then we review multilinear maps and complexity 

assumptions for our RIBE schemes. 

A. Revocable Identity-Based Encryption 

Revocable identity-based encryption (RIBE) is an 

extension of identity-based encryption (IBE) in that a 

user with an identity I D can be revoked later if his 

credential is expired [7]. In RIBE, each user receives his 

(long-term) private key that is associated with an 

identity I D from a key generation center. After that, the 

key generation center periodically broadcasts an update 

key for the non-revoked set of users where the update 

key is associated with a time T and a revoked set R. If a 

user is not revoked in the update key, then he can derive 

his (short-term) decryption key for his identity I D and 

the current time T from the private key and the update 

key. Using the decryption key for I D and T, the user can 

decrypt a ciphertext for a receiver identity I Dc and a 

time Tc if I D = I Dc and T = Tc. The following is the 

syntax of RIBE. 

Definition 2.1 (Revocable IBE): A revocable IBE 

(RIBE) scheme that is associated with the identity space 

I, the time space T, and the message space M, consists of 

seven algorithms Setup, GenKey, UpdateKey, 

DeriveKey, Encrypt, Decrypt, and Revoke, which are 

defined as follows: 

• Setup(1security parameter 1λ, N): The setup 

algorithm takes as input aλand the maximum 

number of 

users N. It outputs a master keyMK, an (empty) 

revocation list RL, a state ST, and public parameters 

PP. 

• GenKey(I D, MK, ST, PP): The private key 

generation algorithm takes as input an identity I D 

∈ I, the master key MK, the state ST, and public 

parameters PP. It outputs a private key SKI D for I D 

and an updated state ST. 

• UpdateKey(T, RL, MK, ST, PP): The update key 

generation algorithm takes as input an update time 

T ∈ T, the revocation list RL, the master keyMK, the 

state ST, and the public parameters PP. It outputs 

an update key UKT,Rfor T and R where R is a 

revoked identity set at the time T. 

• DeriveKey(SKI D,UKT,R, PP): The decryption key 

derivation algorithm takes as input a private key 

SKI D, an update key UKT,R, and the public 

parameters PP. It outputs a decryption key DKID,Tor 

⊥. 

• Encrypt(I D, T, M, PP): The encryption algorithm 

takes as input an identity I D ∈ I, a time T, a 

message M ∈ M, and the public parameters PP. It 

outputs a ciphertext CTI D,Tfor I D and T. 

• Decrypt(CTI D,T, DKID,T, PP): The decryption 

algorithm takes as input a ciphertext CTI D,T, a 

decryption key DKID,T, and the public parameters 

PP. It outputs an encrypted message M or ⊥. • 

Revoke(I D, T, RL, ST ): The revocation algorithm 

takes as input an identity I D to be revoked and a 

revocation time T, a revocation list RL, and a state 

ST. It outputs an updated revocation list RL. 

The correctness property of RIBEis defined as follows: 

For all MK, RL, ST, and PP generated by Setup(1
λ
, N), 
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SKI D generated by GenKey(I D, MK, ST, PP) for any I 

D, UKT,Rgenerated by UpdateKey(T, RL, MK, ST, PP) 
for any T and RL, CTI Dc,Tcgenerated by Encrypt(I Dc, Tc, 
M, PP) for any I Dc, Tc, and M, it is required that 

• If (I D ∈/ R), then DeriveKey(SKI D,UKT,R, PP) = 

DKID,T. 

• If (I D ∈ R), then DeriveKey(SKI D,UKT,R, PP) = ⊥ 
with all but negligible probability. 

• If (I Dc = I D) ∧ (Tc = T), then Decrypt(CTI Dc,Tc, 
DKID,T, PP) = M. 

• If (I Dc = I D) ∨ (Tc = T), then Decrypt(CTI D,T, 
DKID,T, PP) =⊥ with all but negligible probability. 

The security property of RIBEwas formally defined 

by Boldyrevaet al. [7]. Recently Seo and Emura [11] 

refined the security model of RIBE by considering 

decryption key exposure attacks. In this paper, we 

consider the selective revocation list security model of 

the refined security model. In the selective revocation 

list security game, an adversary initially submits a 

challenge identity I D∗, a challenge time T∗, and a 

revoked identity set R∗ at the time T ∗, and then he can 

adaptively request private key, update key, and 

decryption key queries with restrictions. In the challenge 

step, the adversary submits two challenge messages M

, and then he receives a challenge ciphertext CT ∗ 

that is an encryption of Mb∗ where b is a random coin 

used to create the ciphertext. The adversary may 

continue to request private key, update key, and 

decryption key queries. Finally, the adversary outputs a 

guess for the random coin b. If the queries of the 

adversary satisfy the non-trivial conditions and the guess 

is correct, then the adversary wins the game. The 

following is the formal definition of the selective 

revocation security. 

Definition 2.2 (Selective Revocation List Security): 

The selective revocation list security property of RIBE 

under chosen plaintext attacks is defined in terms of the 

following experiment between a challenger C and a PPT 

adversary A: 

1) Init: A initially submits a challenge identity I D
∗ 
∈ 

I, a challenge time T
∗ 
∈ T, and a revoked identity 

set R
∗ 
⊆ I at the time T ∗. 

2) Setup: C generates a master key MK, a revocation 

list RL, a state ST, and public parameters PP by 

running Setup(1
λ
, N). It keeps MK, RL, ST to itself 

and gives PP to A. 

3) Phase 1: A adaptively requests a polynomial 

number of queries. These queries are processed as 

follows: 

• If this is a private key query for an identity I 

D, then it gives the corresponding private key 

SKI D to A by running GenKey(I D, MK, ST, 
PP) with the restriction: If I D = I D∗, then the 

revocation query for I D∗ and T must be 

queried for some T ≤ T ∗. 

• If this is an update key query for a time T, 

then it gives the corresponding update key 

UKT,Rto A by running UpdateKey(T, RL, MK, 
ST, PP) with the restriction: If T = T ∗, then 

the revoked identity set of RLat the time T ∗ 

should be equal to R∗. 

• If this is a decryption key query for an identity 

I D and a time T, then it gives the 

corresponding decryption key DKID,T

to 
A by 

running DeriveKey(SKI D,UKT,R, PP) with the 

restriction: The decryption key query for I D∗ 

and T∗ cannot be queried. 

• If this is a revocation query for an identity I D 

and a revocation time T, then it updates the 

revocation list RLby running Revoke(I D, T, 
RL, ST ) with the restriction: The revocation 

query for a time T cannot be queried if the 

update key query for the time T was already 

requested. 

Note that A is allowed to request the update key 

query and the revocation query in non-decreasing 

order of time, and an update key UKT,Rimplicitly 

includes a revoked identity set R derived from RL. 

4) Challenge: A submits two challenge messages M

 with equal length. C flips a random 

coin b ∈ {0,1} and gives the challenge ciphertext 

CT ∗ to A by running Encrypt(I D∗, T ∗, Mb∗, PP). 
5) Phase 2: A may continue to request a polynomial 

number of private keys, update keys, and 

decryption keys subject to the same restrictions as 

before. 

6) Guess: Finally, A outputs a guess b∈ {0,1}, and 

wins the game if b . 

The advantage ofPrAwhere the probability is taken over 

allis defined as Adv
IND

RI BE
-sRL

,A
-CPA(λ) = 

 
the randomness of the experiment. A RIBE scheme is 

secure in the selective revocation list model under 

chosen plaintext attacks if for all PPT adversary A, the 

advantage of A in the above experiment is negligible in 

the security parameter λ. 

Remark 2.3: The selective revocation list security 

model is weaker than the well-known selective security 

model since the adversary additionally submits the 

revoked identity set R∗ in advance. However, this 

weaker model was already introduced by Boldyrevaet 

al. [7] to prove the security of their revocable ABE 

scheme.
1
 

B. Leveled Multilinear Maps 

                                                           
1
 Boldyreva et al. initially claimed that their revocable ABE scheme 

is secure in the selective model [7], but they later corrected it as their 

revocable ABE scheme is secure in the selective revocation list model 

[29]. 
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We define generic leveled multilinear maps that are 

the leveled version of the cryptographic multilinear 

maps introduced by Boneh and Silverberg [30]. We 

follow the definition of Garg et al. [15]. 

Definition 2.4 (Leveled Multilinear Maps): We 

assume the existence of a group generator G, which 

takes as input a security parameter λ and a positive 

integer k. Let 

,...,Gk) be a sequence of groups of large prime 

order p >2
λ
. In addition, we let gibe a canonical 

generator of Gi respectively. We assume the existence of 

a set of bilinear maps {ei,j: Gi × Gj→ Gi+j|i, j ≥ 1;i + j ≤ k} 
that have the following properties: 

• Bilinearity: The mapei,j(ga, gbj) = giab+j: ∀eai,,j 

bsatisfies the following relation:∈ Zp 

i 

• Non-Degeneracy: We have that ei,j(gi, gj) = gi+jfor 

each valid i, j. 
We say that G is a multilinear group if the group 

operations in G as well as all bilinear maps are 

efficiently computable. We often omit the subscripts of 

ei,jand just write e. 

C. Complexity Assumptions 

We introduce new complexity assumptions in 

multilinear maps. The first assumption is the multilinear 

version of the well-known Bilinear Diffie-Hellman 

Exponent (BDHE) assumption of Bonehet al. [13]. 

Assumption 2.5 [(k,N)-MDHE)]: Let (p,G,{ei,j|i, j ≥ 1; 
i+ j ≤ k}) be the description of a k-leveled multilinear 

group of order p. Let gibe a generator of Gi. The 

decisional (k, N)-MDHE assumption is that if the 

challenge tuple D ,..., g1aN ,g1aN+2,..., g1a2N , 
g1c1,..., g1ck−1and Z are given, no PPT algorithm A can 

distinguish 

aNciZ = Z0 = gkfrom a 

random element Z = Z1∈Gk with more than a negligible 

A advantage. The advantage of 
(k,N)-MDHE 

is defined as Adv(D, Z0) = 0] − choices 

ofPr[A(D, Z1a),=c1,...,0]Awhere the probability is taken 

over randomck−1 ∈ Zp. 

For the security proof of our first RIBE scheme, we 

use (3, N)-MDHE assumption that is a specific instance 

of the MDHEassumption since the scheme is built on 

the three-leveled multilinear maps. 

Assumption 2.6 [(3,N)-MDHE]: Let (p,G,e1,1,e1,2,e2,1) 
be the description of a three-leveled multilinear group of 

order p. Let gibe a generator of Gi. The decisional (3, N)-
MDHE assumption is that if the challenge tuple 

D = g1, g1a, g1a2,..., g1aN , g1aN+2,..., g1a2N , g1b, g1cand Z 

are given, no
N1 

PPT algorithm A can distinguish Z = Z0 = 
g3

a + bc
from a random element Z = Z1 ∈ G3 with more than 

a negligible advantage. The advantage of A 
(3,N)-
MDHE 

is defined as Adv(D, Z0) = 0] − 

Prrandom choices of[A(D, Z1) = 0Aa],bwhere the 

probability is taken over,c∈ Zp. 

The second assumption in multilinear maps is the 

compressed version of the BDHE assumption. Bonehet 

al. [17] introduced this compressed assumption to prove 

the security of their broadcast encryption in multilinear 

maps.
2

We slightly modify their assumption for our 

second RIBE scheme by adding additional one element. 

Assumption 2.7 [(k,n,l)-cMDHE]: Let (p,G,{ei,j|i, j ≥1; 
i+ j ≤ k}) be the description of a k-leveled multilinear 

groups of order p where k = 2n + l − 2. Let gibe a 

generator of Gi. The decisional (k,n,l)-cMDHE 

assumption is that if the 

challenge tuple 
n 

D,..., g1
a2 , gl

b, gn
c
−1and Z 

are given, no PPT 2n algorithm1 A can distinguish Z = Z0 = 
g2an+−l−bc2 from a random element 

Z = Z1 ∈ G2n+l−2 with more than a negligible 

advantage.(k,n,l)-MDHE 

The advantage of A is defined as Adv (λ) = Pr[A(D, Z0) = 

0] − Pr[A(D, Z1) =A 0] where the probability is taken over 

random choices of a,b,c∈ Zp. 

We discuss the difficulty of our new assumptions in 

generic multilinear groups in Appendix A. 

III. REVOCABLE IBE WITH SHORTER KEYS 

In this section, we propose an RIBE scheme with a 

constant number of private key elements and update key 

elements from three-leveled multilinear maps and prove 

its selective revocation list security. Essentially, we use 

the broadcast encryption of Bonehet al. [13], which uses 

bilinear maps. 

A. Construction 

Let N = {1,..., N1} where N is the (polynomial) number 

of users. Let I = {0,1}l
be the identity space and T = {0,1}l2 

be the time space where l1 = 2λ and l2 = λ for a security 

parameter λ. Our RIBE scheme from three-leveled 

multilinear maps is described as follows: 

RIBE.Setup(1
λ
, N): This algorithm takes as input a 

security parameter 1
λ 

and the maximum number N of 

users. It generates a 3-leveled multilinear group G = 
(G1,G2,G3) of prime order p. Let g1, g2, g3 be generators 

of G1,G2,G3 respectively. Let PPMLMbe the description of 

the multilinear group with generators. 

                                                           
2
 In [17], Boneh et al. called their new assumption as the Multilinear 

Diffie-Hellman Exponent (MDHE) assumption, but it is different to 

our MDHE assumption. 
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1) It selects random elements f, f ,h, h ∈1. 

fk f f and hk =
 (hk,0,{hk,i,j}1≤i≤l2,j∈{0,1}) for a

 level k. 

Note that we can obtain  and h2 from f1 and h1 

by performing 
pairing

1 operations. We define Fk(I 

D) = fk,0 
l
i=1 fk,i,I D[i] and Hk(T) = hk

,0 
l
i
2=

1 
hk

,i,T
[
i
] where 

I D[i] is a bit value at the position iand T[i] is a bit 

value at the position i. 

2) Next, it selects random exponents α,β,γ ∈ Zp. It 

outputs a master key MK = (α,β,γ), an empty 

revocation list RL, an empty state ST, and public 

parameters PP as 

PPMLM, j,j=N+1≤2N, g1
β
, f1, h1, 

. 
RIBE.GenKey(I D, MK, ST, PP): This algorithm takes 

as input an identity I D ∈ I, the master keyMK, the state 

ST, and public parameters PP. 

1) It first assigns an index d ∈ N that is not in ST to 

the identity I D, and updates the state ST by 

adding a tuple (I D,d) to ST. 

2) Next, it selects a random exponent r1 ∈ Zpand 

outputs a private key SKI D by implicitly including 

I D and the index d as 

K0 = g1αdγF1(I D)−r1, K1 = g1−r1. 
RIBE.UpdateKey(T, RL, MK, ST, PP): This algorithm 

takes as input a time T, the revocation list RL, the master 

keyMK, the state ST, and public parameters PP. 

1) It first defines the revoked set R of user identities 

at the time T from RL. That is, if there exists (I D, 
T )such that (I D, T ) ∈ RLfor any T≤ T, then I D∈ 
R. It defines the revoked index set RI ⊆ N of the 

revoked identity set R by using the state ST since 

ST contains (I D,d). It also defines the non-

revoked index set SI = N \ RI. 

2) Next, it selects a random exponent r2 ∈ Zpand 

outputs an update key UKT,Rby implicitly 

including T, R, and the revoked index set RI as 

U  g . 
RIBE.DeriveKey(SKI D,UKT,R, PP): This algorithm 

takes as input a private key SKI D = (K0, K1) for an 

identity I D, an update key UKT,R= (U0,U1) for a time T 

and a revoked set R of identities, and the public 

parameters PP. If I D ∈ R, then it outputs ⊥ since the 

identity I Dis revoked. Otherwise, it proceeds the 

following steps: 

1) Let d be the index of I D and RI be the revoked 

index set of R. Note that these are implicitly 

included in SK and UK respectively. It sets a non-

revoked index set 

SI = N \ RI and derives temporal components T0, 
T1 and T2 as 

 T  g , 

SI,j=d 

T  

2) Next, it chooses random exponents r p 

and re-randomizes these components as D0 = 

T . 

 Note that these components are formed

 as 
α + β 

 D0 = g2 N 1 F2(I D)r1H2(T)r2, D1 = g2−r1, 
D2 = g2−r2where r1= βr1 + r1and r2= αdr2 + r2. 

3) Finally, it outputs a decryption key as DKID,T= D0, 
D1, D2. 

RIBE.Encrypt(I D, T, M, PP): This algorithm takes as 

input an identity I D, a time T, a message M, and the 

public parameters PP. It first chooses a random 

exponent s ∈ Zpand outputs a ciphertext CTI D,Tby 

implicitly including I D and T as 

C  M, C s, C . 
RIBE.Decrypt(CTI D,T, DKID,T, PP): This algorithm 

takes as input a ciphertext CTI D,T= (C,C0,C1,C2), a 

decryption key DKID,T= (D0, D1, D2), and the public 

parameters PP. If (I D = I D T = T), then it outputs 

the encrypted message M as M (Ci, 

Di)−1. 

Otherwise, it outputs ⊥. 

RIBE.Revoke(I D, T, RL, ST): This algorithm takes as 

input an identity I D, a revocation time T, the revocation 

list RL, and the state ST. If (I D,−) ∈/ ST, then it outputs 

⊥ since the private key of I D was not generated. 

Otherwise, it adds (I D, T) to RL. It outputs the updated 

revocation list RL. 

B. Correctness 

Let SKI D be a private key for an identity I Dthat is 

associated with an index d, and UKT,Rbe an update key 

for a time T and a revoked identity set R. If I D ∈/ R, 

then the decryption key derivation algorithm first 

correctly derives temporal components as 

 T , K0  
g

1αN+1−j+d )−1 
j∈SI,j=d 

= e g1αN+1−j )βH1(T)r2) 
j∈SI 

 × e(g   g1αN+1−j+d )−1 
j∈SI,j=d 



Juni Khyat                                                                                                  ISSN: 2278-4632 

(UGC Care Group I Listed Journal)                      Vol-10 Issue-09 No.03 September 2020 

Page | 274                                                                                      Copyright @ 2020 Authors 

 e
d ,H1(T)r2), 

= g r2, 

T  g2−βr1, 

T where RI is 

the revoked index set of R and SI = N \ RI. 

Next, a decryption key is correctly derived from the 

temporal components by performing re-randomization 

as D0 = T0 · F12(I D)r
1H2(T)r

2d α + β 

= g2 N F2(I D)βr1 H2(T)α r2 d· F2(I D)r1H2(T)r2α + 

βF 

 = g2 N 1 2(I D)βr1+r1H2(T)α r2+r2 

= g2αN+1βF2(I D)r1H2(T)r2, 
D1 = T1 · g2−r1= g2−βrd1−r1= g2−r1, 

D2 = T2 · 
g

2−r
2= g2−α r2−r

2= g2−r
2where 

r1= βr1 + r1and r2= αd
r2 + r2. 

Let CTI D,Tbe a ciphertext for an identity I D and a 

time T, and DKID,Tbe a decryption key for an identity I 

Dand a time T . If (I D = I D) ∧ (T = T), then the 

decryption algorithm correctly outputs an encrypted 

message by the following equation. 
2 

e(Ci, Di) 
i=0 

= e(g  

e

 
N 

· 
e 

. 
C. Security Analysis 

To prove the security of our RIBE scheme, we 

carefully combine the partitioning methods of the PKBE 

scheme of Bonehet al. [13] and the HIBE scheme of 

Boneh and Boyen [16]. 

Theorem 3.1: The above RIBE scheme is secure in 

the selective revocation list model under chosen 

plaintext attacks if the (3, N)-MDHE assumption holds 

where N is the maximum number of users in the system. 

That is, for any PPT adversary A, we have that AdvINDRI 

BE-sRL,A-CPA(λ) ≤ 
-MDHE 

Adv(λ). 
Proof: Suppose there exists an adversary A that 

attacks the above RIBE scheme with a non-negligible 

advantage. A simulator B that solves the 

MDHE assumption using A is given: a challenge tuple 

D ,..., g  

Z where Z  Z1 ∈ G3. Then B 
that interacts with A is described as follows: 

Init: A initially submits a challenge identity I D∗, a 

challenge time T ∗, and a revoked identity set R∗ at the 

time T∗. 

It first sets a state ST and a revocation list RLas empty 

one. For each I D ∈ {I D
∗
} ∪ R∗, it selects an index d ∈ N 

such that (−,d) ∈/ ST and adds (I D,d) to ST. Let RI
∗ 
⊆ N 

be the revoked index set of R∗ at the time T ∗ and SI∗ be 

the non-revoked index set at the time T ∗ such that SI
∗ 

= 
N\RI∗. 

Setup: B first chooses random exponents f0,

,θ ∈ Zp. 

It implicitly setspublishes the public parametersα = a,β= 
b,γ= θ − j∈SI∗ a

N
+

1
−

j 
and 

PP as 

 g1αi i i,i=N+1≤2N , g , 
l1 

f1  g1f0f , 
i=1 

f1,i,j fi,j1≤i≤l1,j∈{0,1}, 

l2 

h
0 
h, hg1  

i=1 

h1,i,j hi,j1≤i≤l2,j∈{0,1}, 

. 
For notational simplicity, we define I D 

( fi,I D[i] − 

fi,I D  li . We have 

I Dexcept with negligible probability if 

I D = I D∗ since there exists at least one 

isuch that fi,I D[i] and  are index 

randomly chosen. We also have  p except 

with negligible probability if T = T∗. 
Phase 1: A adaptively requests a polynomial number 

of private key, update key, and decryption key queries. 

If this is a private key query for an identity I D, then B 
proceeds as follows: 

• Case I D ∈ R∗: In this case, the simulator can use 

the partitioning method of Bonehet al. [13]. It first 

retrieves a tuple (I D,d) from ST where the index d 

is associated with I D. Note that the tuple (I D,d) 
exists since all identities in R∗ were added to ST in 

the initialization step. Next, it selects a random 

exponent r1 ∈ Zpand creates a private key SKI D as 

× 
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K 
 g1−

r1. 
j∈SI 

• Case I D : In this case, we have I D = I D∗ 

from the restriction of Definition 2.2 and the 

simulator can use the partitioning method of Boneh 

and Boyen [16]. It first selects an index d ∈ N such 

that (−,d) ∈/ ST and adds (I D,d) to ST. Next, it 

selects a random exponents r p and creates a 

private key SKI D by implicitly setting r1 = −a/I D 

 as 

K  g  f0/I D F1(I 
D)−r1, 

j∈SI
∗\{d} 

K /I Dg1r1. 
If this is an update key query for a time T, then B 

defines a revoked identity set R at the time T from 

RLand proceeds as follows: 

• Case T = T∗: In this case, the simulator can use the 

partitioning method of Boneh and Boyen [16]. It 

first sets a revoked index set RI of R by 

It also setsN\ RI. Next, it using ST. 

random exponent 
r

2p and selects a 

creates an update key UKT,Rby implicitly 

setting
N

+
1

−
j
)/rT2 = −as(− j∈SI∗\SI a

N
+

1
−

j + 

 j∈SI\SI∗ a  

 U g1−aN+1−j  g1aN /T 
 \SI j∈SI\SI∗ 

H1(T)r2, 

U g1−aN+1−j g N+1−j −1/T 

g1r2. j SI \SI j∈SI\SI∗ 

• 
Case T 

= T ∗: In this case, we have 
R 

= R∗ and the 

simulator can use the partitioning method of 

Bonehet al. [13]. For each I D ∈ R∗, it adds (I D, T 

∗) to 

RLif (I D, T )∈/ RLfor any T≤ T ∗. Next, it selects a 

random exponent r2 ∈ Zpand creates an update key 

UKT,Ras 

U . 
If this is a decryption key query for an identity I D and a 

time T, then B proceeds as follows: 

• Case I D = I D∗: In this case, the simulator can use 

the partitioning method of Boneh and Boyen [16]. 

If (I D,−) ∈/ ST, then it selects an index d ∈ N such 

that (−,d) ∈/ ST and adds (I D,d) to ST. 

Next, it selects random exponents r p and 

creates a decryption key DKID,Tby implicitly setting 

r1 = (−a/I D b as 

D /I D F1(I D)r1, g1b · H2(T)r2, 

D /I Dg1r1, g1b, D2 = g2r2. 
• Case I D = I D∗: In this case, we have T = T ∗ from 

the restriction of Definition 2.2, and the simulator 

can use the partitioning method of Boneh and 

Boyen [16]. It selects random exponents r

p and creates a decryption key DKID,Tby 

implicitly setting 

r2 = (−a/T a
N
as 

 D /T H  N

 F2(I D)r1, 

 D /T g rN . 
Challenge: A submits two challenge messages M 

chooses a random bit δ ∈ {0,1} and creates the 

challenge ciphertext CT∗ by implicitly setting s = c as 

C . 
Phase 2: Same as Phase 1. 

Guess: Finally, A outputs a 

guessoutputs 0 if δ = δor 1 otherwise. 

To finish the proof, we first show that the distribution 

of the simulation is correct from Lemma 3.2. Let η be a 

random bit for Zη. From the above simulation, we have 

Pr 0] =  + Adv
IND

RI BE
-sRL

,A
-CPA(λ) since the 

distribution of the simulation is correct, and we also 

have Pr since δ is completely hidden 

to A. Therefore we can obtain the following equation 

Adv(3,N)-MDHE(λ) 
B 

 

 

AdvINDRI BE- AdvINDRI BE-

 
This completes our proof.  

Lemma 3.2: The distribution of the above simulation 

is correct if Z = Z0, and the challenge ciphertext is 

independent of δ in the adversary’s view if Z = Z1. 

Proof: The distribution of public parameters is 

correct since random exponents f

p are chosen. 

We show that the distribution of private keys is 

correct. In case of I D ∈ R∗, we have that the private key 

is correctly distributed from the setting 

j 
as the following equation 

K0 = g g r1 

g . 
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In case of I D ∈/ R∗, we have that the private key is 

correctly distributed from the setting γ = θ − j∈SI∗ aN+1−j 

and r1 = −a/I D  as the following equation 

K r1 
l 

f1,i,I D[i]−r1 
i

=1 

g1−aN+1−j+d ·g N I Da/I D

 
\{

d
} 

 g  f0/I D F1(I D)−r1, 

K /I Dg1r1. 
Next, we show that the distribution of update keys is 

correct. In case of T = T ∗, we have that the update key is 

correctly distributed 

from the setting 

j 
and r

2 = −(− j
∈

SI∗\
SI 

aN)/T +r
2
as the following 

equation 

U0 g  
SI 

t 

g j bh1,0 

h1,i,T[i]r2 
 SI i=1 

   j  g j b 
 j∈SI\SI j∈SI\SI∗ 

 ×
g

1
h

0

g
1bT 

 j∈SI\SI − j∈SI\SI +r2 

 g1−aN+1−j  g /T 
 \SI j∈SI\SI∗ 

×H1(T)r
2, 

U g1−aN+1−j  g N+1−j −1/T g1r2. 
 \SI j∈SI\SI∗ 

In case of T = T ∗, we have that the update key is 

correctly distributed from the setting 

j 
as the following equation 

U  H1(T ∗)r2
 

 g j bH1(T∗)r2 j∈SI∗

 j∈SI∗ 

. 
We show that the distribution of decryption keys is 

correct. In case of I D = I D∗, the decryption key is 

correctly distributed from the setting logg2 F2(I D) = αN
I 

D and r1 = (−α/I D b as the following equation 

D F2(I D)r1 H2(T)r2 
l 

= g f a/I D  
i=1 

N 
I D−a/I D  H2(T)r2 

 /I D F  
 

H2(T)r
2, 

D a/I D) /I D
g

1r
1,

g
1b. 

In case of I D = I D∗, the decryption key is correctly 

distributed from the setting logg2 H2(T) = bTand r2 = 

(−a/T a
N
as the following equation 

D F2(I D)r1 H2(T)r2 

= g a/T a
N 

a/T  F2(I D)r1 

 /T H  N

 F2(I D)r1, 

D e(g1, g1)(−a/T aN 

 /T g
r
 

N 

Finally, we show that the distribution of the challenge 

ciphertext is correct. If Z = Z0 = g3
aN+1bc 

is given, then the 

challenge ciphertext is correctly distributed as the 

following equation 

 C , 

C  g1c, 
l 

f

 

ff0, 
C1 

i=1 
t 

 C2 hh . 
i=1 

Otherwise, the component C of the challenge ciphertext 

is independent of δ in the A’s view since Z1 is a random 

element in G3. This completes our proof.  

D. Discussions 

Graded Encoding Systems: The candidate multilinear 

maps of Garg et al. [15] are different from the leveled 

multilinear maps in Section II-B. The main difference is 

that the encoding of a group element is randomized in 

the GGH framework whereas the encoding is 

deterministic in the leveled multilinear maps. This 

means that it is not trivial to check whether two strings 

encode the same element. Thus, additional procedures 

for this checking are essentially required in the 

GGHframework. In the full version of this paper [31], 

we define the graded encoding system of Garg et al. 

[15] and translate our RIBE scheme for small universe 
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in that the total number of identities is limited to 

polynomial number into the graded encoding system. 

Asymptotic Analysis: The number of group elements 

in public parameters, a private key, an update key, and a 

ciphertext of our RIBE scheme is O(N + λ), O(1), O(1), 
and O(1) respectively, where N is the maximum number 

of users. Although our RIBE scheme provides efficient 

asymptotic parameters, except for the public parameters, 

it is not actually efficient since the underlying 

multilinear maps are not yet practically efficient. Let λ = 
80 and k = 3. The multilinear maps of Garg et al. [15] 

have the following asymptotic parameters such that the 

bit size of the public parameters is O(k3λ5 
log(kλ)) ≈ 7.1 ∗ 

10
11 

and the bit size of group elements is O(k2λ3) ≈ 4.6 ∗ 
10

6
. 

To improve the efficiency, we may use the multilinear 

maps of Langlois et al. [32] such that the bit size of the 

public parameters is O(k3λlog
2(kλ)) ≈ 1.8 ∗ 10

5 
and the 

bit size of the group elements is O(k2λlog
2(kλ)) ≈ 4.6 ∗ 

10
4
. Note that the bit size of the group elements in 

bilinear groups is 160. 

Chosen-Ciphertext Security: Security against 

chosenciphertext attacks (CCA security) is similar to 

security against chosen-plaintext attacks (CPA security) 

except that an adversary can request a ciphertext 

decryption query. To provide CCA security, we can use 

the general transformation of Canetti et al. [33] since the 

structure of our RIBE scheme is similar to that of the 

BB-HIBE scheme [16]. That is, we can modify our 

RIBE scheme to support three-level hierarchies by 

providing additional elements, and then the modified 

RIBE scheme is easily converted to a CCA-secure RIBE 

scheme since this tree-level HIBE scheme with CPA 

security is converted to a two-level HIBE scheme with 

CCA security. 

IV. REVOCABLE IBE WITH SHORTER PARAMETERS 

In this section, we propose an RIBE scheme with 

short public parameters and short keys from multilinear 

maps and prove its selective revocation list security. To 

achieve shorter size of public parameters, we use the 

BWZ-PKBE scheme [17] that uses multilinear maps 

since it has short public parameters and the structure of 

it is almost similar to that of the BGW-PKBE scheme 

[13]. 

A. Construction 

We set N = 2
n−2 for some integer n. Note that N 

should be polynomial in the security parameter
1 λ. Let N 

= {1,...,2N}. Let I = {0,1}l
be the identity space and T = 

{0,1}l 
be the time space where l1 = 2λ and l2 = λ. We 

suppose that an index d that is assigned to an identity I 

D has a Hamming weight l. Our RIBEscheme from 

2n+l−2-leveled multilinear maps is described as follows: 

RIBE.Setup(1
λ
, N): This algorithm takes as input a 

security parameter 1
λ 

and the maximum number N of 

users. It generates a 2n + l − 2-leveled multilinear group 

Gi respectively. Let,...,G2n+l−2) of prime 

orderPPMLMbe the description of thep. Let gibe 

generators 

of multilinear group with 

generators. 

1) It selects random elements fn−1,0, 
 fn1,i,j 1≤i≤l ,j 0,1 ,hn1,0, hn1,i,j 1≤i≤l ,j 0,1 ∈ 

−1. Let and hk= hk,0,{hk,i,j}1≤i≤l2,j∈{0,1}for a level 

k ≥ n − 1. Note that we can obtain fkand hkfrom 

fn−1 and  by performing pairing operations.l1 

We define Fk(I D) = fk,0 i=1 fk,i,I D[i] and value at the 

positionHk(T) = hk
,0 

l
i
2=

1
ihkand

,i,T 
[
i
T] 

[iwhere] is a bit value at theI D[i] is a bit 

position i. 

2) Next, it selects random exponents α,β,γ ∈ Zp. It 

outputs a master key MK = (α,β,γ), an empty 

revocation list RL, an empty state ST, and public 

parameters PP as 

PPMLM, g1
α2i 

0≤i≤n, gl
β
, fn−1, hn−1, 

. 
RIBE.GenKey(I D, MK, ST, PP): This algorithm takes 

as input an identity I D ∈ I, the master keyMK, the state 

ST, and public parameters PP. 

1) It first assigns an index d ∈ {0,1}n
of Hamming 

weight l that is not in ST to the identity I D and 

updates the state ST by adding a tuple (I D,d) to 

ST. 

2) It computespairing operations on the elements that 

are giveningn
α

−d 
1 by performing multiplications 

andPP. 

3) Next, it selects a random exponent r1 ∈ Zpand 

outputs a private key SKI D by implicitly including 

I D and the index d as 

K0 = gnα−dγ1Fn−1(I D)−r1, K1 = gn−−r11. 
RIBE.UpdateKey(T, RL, MK, ST, PP): This algorithm 

takes as input a time T ∈ T, the revocation list RL, the 

master keyMK, the state ST, and public parameters PP. 

1) It first defines the revoked set R of user identities 

at the time T from RL. That is, if there exists (I D, 
T )such that (I D, T ) ∈ RLfor any T≤ T, then I D∈ 
R. It defines the revoked index set RI ⊆ N of the 

revoked identity set R by using the state ST since 

ST contains (I D,d). It also defines the non-

revoked index set SI = N \ RI. Note that |SI| is 

polynomial since N is 

polynomial. 

2) It computesj∈SIby performing multiplications and 

pairing operations on the elements that are given 

in PP. 
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3) Next, it selects a random exponent r2 ∈ Zpand 

outputs an update key UKT,Rby implicitly 

including T, R, and the revoked index set RI as 

 U 2 . 
RIBE.DeriveKey(SKI D,UKT,R, PP): This algorithm 

takes as input a private key SKI D = (K0, K1) for an 

identity I D, an update key UKT,R= (U0,U1) for a time T 

and a revoked set R of identities, and the public 

parameters PP. If I D ∈ R, then it outputs ⊥ since the 

identity I Dis revoked. Otherwise, it proceeds the 

following steps: 

1) Let d be the index of I D and RI be the revoked 

index set of R. Note that these are implicitly 

included in SK and UK respectively. It sets a non-

revoked index set SI = N \ RI. Note that |SI| is 

polynomial since N is 

polynomial. 

2) It computes gl
αd ,j∈SI,j=d by performing 

multiplications and pairing operations on the 

elements that are given in PP. Using these 

elements, it derives temporal components T0, T1 

and T2 as 

 T0 = e(gl
αd ,U0) · eg   g , 

j∈SI,j=d 

T  

3) Next, it chooses random exponents 
r

1,
r

2∈ Zpand re-

randomizes these components as D0 = 

 T0 ·=Fn+l·−1−(rI D2)r
.
1
Hn+l−1(T)r2, D

 T gn+rl−1, 
4) Finally,D2 T2 gitn+l−1outputs a decryption key as 

DKID,T= D0, D1, D2. 

RIBE.Encrypt(I D, T, M, PP): This algorithm takes as 

input an identity I D, a time T, a message M, and the 

public parameters PP. It chooses a random exponent s ∈ 
Zp 

and outputs a ciphertext CTI D,T by implicitly including 

I D and T as 

C = s · M, C0 = gn
s
−1, C1 = Fn−1(I D)s, C2 = 

Hn−1(T)s. 
RIBE.Decrypt(CTI D,T, DKID,T, PP): This algorithm 

takes as input a ciphertext CTI D,T= (C,C0,C1,C2), a 

decryption key DKID,T= (D0, D1, D2), and the public 

parameters PP. If (I D = I D T = T), then it outputs 

the encrypted message M as M = C · 0 e(Ci, Di)−
1
. 

Otherwise, it outputs ⊥. 

RIBE.Revoke(I D, T, RL, ST): This algorithm takes as 

input an identity I D, a revocation time T, the revocation 

list RL, and the state ST. If (I D,−) ∈/ ST, then it outputs 

⊥ since the private key of I D was not generated. 

Otherwise, it adds (I D, T) to RL. It outputs the updated 

revocation list RL. 

B. Correctness 

We first show that some elements that are needed for 

the scheme can be easily computed from the elements in 

PP. We use the following claim of Boneh, Waters, and 

Zhandry. 

Claim [17]: Using group multiplications and pairing 

operations on the g1
α2i 

for i∈ [0,n], it is possible to 

compute gl
α j 

for j ∈ [1,2n −2] of weight exactly2n 1 j lu, g

 
of weight exactly l, and gn

α
−1

− − + 
for j,u  

u of weight exactly l. 

The correctness of decryption keys and the decryption 

algorithm is almost similar to that of Section III. We 

omit this since the lack of space. 

C. Security Analysis 

The proof of security is almost similar to that in 

Theorem 3.1. 

Theorem 4.1: The above RIBE scheme is secure in 

the selective revocation list model under chosen 

plaintext attacks if the (k,n,l)-cMDHE assumption holds 

where N = 2
n −2 is the maximum number of users and k 

= 2n+l −2. That is, for any PPT adversary(k,n,l)-cMDHEA, 

we have that Adv
IND

RI BE
-sRL

,A
-CPA(λ) ≤ 

Adv (λ). 
B 
Proof: Suppose there exists an adversary A that 

attacks the above RIBE scheme with a non-negligible 

advantage. A simulator B that solves the cMDHE 

assumption using2n A is given: a challenge tuple D , 

g ,..., 
g

1
a ,

g
l
b, 

g
n

c
−1and 

ZorZ = Z1 ∈ G2n+l−2. Then Z where 

B that interacts with A is described as follows: 

Init: A initially submits a challenge identity I D∗, a 

challenge time T ∗, and a revoked identity set R∗ at the 

time T∗. 

It first sets a state ST and a revocation list RLas empty 

one. For each I D ∈ {I D
∗
} ∪ R∗, it selects an index d ∈ N 

with Hamming weight l such that (−,d) ∈/ ST and adds (I 
D,d) to ST. Let RI

∗ 
⊆ N be the revoked index set of R∗ at 

the time T ∗ and SI∗ be the non-revoked index set on the 

time T ∗ such that SI
∗ 

= N \ RI∗. 

Setup: B first chooses random exponents f0,

,θ n∈ Zp. 

It implicitly setspublishes the public parametersα = a,β= 
b,γPP= θas− j∈SI∗ a

2 
−

1
−

j 
and 

g i 2i n, glβ = glb, 
l1 

fn−1 =  fn−1,0 = gn
f
−0

1fn , 
i=1 

fn fi,j1≤i≤l1,j∈{0,1}, 
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l2 

h n−1 = hn−1,0 = gnh−0 1hn , 
i=1 

 hn−12,i,j2 hi,j1≤i≤2ln2,1j∈{0,1}, 

), glb, gn  g2αn+−l−b2. 

For notational simplicity, we define
l
I D ( fi,I D[i] − 

fi,I D∗ ) and T = i

. We have 

I Dpexcept with negligible probability if 

I D = I D∗ since there exists at least one index isuch that 

havefi,I D[i] T= ≡fi,I D0 [imod] p except with 

negligible probability, are randomly chosen. We also if T 

= T∗. 
Phase 1: A adaptively requests a polynomial number 

of private key, update key, and decryption key queries. 

If this is a private key query for an identity I D, then B 
proceeds as follows: 

• Case I D ∈ R∗: It first retrieves a tuple (I D,d) from 

ST where the index d is associated with I D. Note 

that the tuple (I D,d) exists since all identities in R∗ 

were added to ST in the initialization step. Next, it 

selects a random exponent r1 ∈ Zpand creates a 

pri

va

te 

key SKI D as 

θ ar1, Kgn 

K . 
• Case I D : In this case, we have I D = I D∗ from 

the restriction of Definition 2.2. It first selects an 

index d ∈ 

N such that (−,d) ∈/ ST and adds (I D,d) to ST. Next, 

it selects a random exponents r p and creates a 

private key SKI D by implicitly setting r1 = −a/I D 

 as 

K0gn−−a12n−1−j+d 

(gna−1) f0/I D 

\{
d

} 

Fn , 

K /I Dgnr . 
If this is an update key query for a time T, then B 

defines a revoked identity set R at the time T from 

RLand proceeds as follows: 

• Case T = T ∗: It first sets a revoked index set RI of 

R by using ST. It also sets SI = N \ RI. Next, it 

selects a random exponent r2∈ Zpand creates an 

update keynUKT,Rby implicitly setting
2

n−
1

−
j
)/r2T = 

−as(− j∈SI∗\SI a
2 

−
1
−

j +  j∈SI\SI∗ a  

U  

g
j 
gna− /T 

j∈SI
∗\SIj∈SI\SI∗ 

 ×Hn−1(T)r
2,1 j 2n 

 U \SI gn−−a12n− − j∈SI\SI∗ gna−1

 /T 
r

2 

× gn−1. 
• Case T = T ∗: In this case, we have R = R∗. For each 

I D ∈ R∗, it adds (I D, T ∗) to RLif (I D, RLfor 

any T ≤T ∗. Next, it selects a random exponent r2 ∈ 
Zpand creates an update key UKT,Ras 

U . 
If this is a decryption key query for an identity I D 

and a time T, then B proceeds as follows: 

• Case I D = I D∗: If (I D,−) ∈/ ST, then it selects an 

index d ∈ N such that (−,d) ∈/ ST and adds (I D,d) to 

ST. Next, it selects random exponents r p 

and creates a decryption key DKID,Tby implicitly 

setting r1 = (−a/I D b as 

D /I D Fn−1(I D)r1, glb · 
Hn+l−1(T)r2, 

D /I Dgnr
1−1, glb, D . 

• Case I D = I D∗: In this case, we have T = T∗ from 

the restriction of Definition 2.2. It selects random 

exponents r p and creates a decryption key 

DKID,Tby implicitly setting r2 = (−a/T  as 

D /T Hl r a2 2 · Fn+nl−21(I 

D)r1, D /T glr2, gna−2 

1− . 
Note that it can computes Hl(T) since gl

b
is given in 

the assumption. 

Challenge: A submits two challenge messages M 

chooses a random bit δ ∈ {0,1} and creates the 

challenge ciphertext CT∗ by implicitly setting s = c as 

C 

. 
Phase 2: Same as Phase 1. 

Guess: Finally, A outputs a guess 

outputs 0 if δ = δor 1 otherwise. 

To finish the proof, we should show that the 

distribution of the simulation is correct. We omit the 

analysis of the distribution since the analysis is almost 

similar to that of Lemma 3.2 except that it uses 

multilinear maps and the Claim IV-B. This completes 

our proof.  

D. Discussions 

Asymptotic Analysis: The number of group elements 

in public parameters, a private key, an update key, and a 

ciphertext of our second RIBE scheme is O(log N +λ), 
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O(1), O(1), and O(1) respectively, where N is the 

maximum number of users. However, our RIBE scheme 

requires k-leveled multilinear maps where k ≈ 2.5log N 

since the BWZ-PKBE scheme requires 1.5log N-leveled 

multilinear maps [17]. If we use the improved 

multilinear maps of Langlois et al. [32], the bit size of 

the group elements in k-leveled multilinear maps is 

O(k2λlog
2(kλ)). Let λ = 80 and N = 220

. The bit size of the 

group elements in 2.5log N-leveled multilinear maps is 

approximately 2.4 ∗ 10
5
. In the BGK-RIBE scheme [7], 

the bit size of a private key and an update key is 

approximately 3.2 ∗ 10
2 

and 1.6 ∗ 10
6 

respectively, 

where the number of revoked users is r = 2
10

. Therefore, 

our second RIBE scheme equipped with the currently 

best leveled multilinear maps [32] does not provide 

better parameters except the bit size of update keys. 

However, we expect that the parameters of leveled 

multilinear maps will be improved in the near future. 

V. CONCLUSION 

In this paper, we devised a new technique for RIBE 

that uses multilinear maps to combine an IBE scheme 

with a PKBE scheme. Following our technique, we first 

proposed an RIBE scheme with a constant number of 

private key elements and update key elements by 

combining the HIBE scheme of Boneh and Boyen [16] 

and the BGW-PKBE scheme [13], and then we proved 

its security in the selective revocation list model. Next, 

we proposed another RIBE scheme that reduces the 

number of public parameters from O(N + λ) to O(log N + 
λ) group elements by using the BWZ-PKBE scheme 

[17], which has short public parameters. We expect that 

our technique will open a new direction to build an 

efficient RIBE scheme and its extensions. 

There are many interesting unsolved problems in 

RIBE. The first one is to construct an RIBE scheme with 

short parameters and short keys that is secure in the 

adaptive security model instead of in the selective 

revocation list model. The second one is to construct a 

revocable HIBE (RHIBE) scheme with better 

parameters. RHIBE provides the private key delegation 

functionality and the revocation functionality for each 

user. The RHIBE scheme of Seo and Emura [11] has 

O(l2 
log N) number of private key elements and O(r 

log(N/r)) number of update key elements where l is the 

depth of hierarchy, N is the maximum number of users, 

and r is the maximum number of revoked users. The 

third one is to build an RIBE scheme with a constant 

number of private key elements and update key elements 

that can handle the exponential number of users in the 

system. Recall that our second RIBE scheme cannot 

handle the exponential number of users since the size of 

receiver set in the BWZ-PKBE scheme is restricted to 

being polynomial. 

APPENDIX A SECURITY IN GENERIC MULTILINEAR 

GROUPS 

In this section, we introduce the definition of generic 

multilinear groups and discuss the difficulty of our new 

assumptions in generic multilinear groups. 

A. Generic Multilinear 

Groups 

We define the generic multilinear groups by following 

the generic group model [34], [35]. Let k be the target 

integer. Let ξ :Zp× Z → {0,1}m 
be a random injective 

encoding that maps elements of the additive group Zpand 

an integer Z into strings of length m. We define the 

groups Gi = {ξ(x,i)|x ∈ Zp}. We are given oracles to 

compute the multiplication and pairing operations. That 

is, an algorithm in the generic multilinear groups is 

given the following oracles: 

Encode(x, i): If iis a non-negative integer such that i≤ 
k, then it returns ξ(x,i). Otherwise it returns ⊥. Note that 

the generator gifor the group Gi can be obtained as 

Encode(1,i). Mult(ξ1,ξ2,b): If ξ1 = ξ(x1,i) and ξ2 = ξ(x2, j) 
where i= j, then it returns ξ(x1 + (−1)b

x2,i). Otherwise, it 

returns ⊥. 

Pair(ξ1,ξ2): If ξ1 = ξ(x1,i) and ξ2 = ξ(x2, j) where i+ j ≤ k, 

then it returns ξ(x1·x2,i+ j). Otherwise it returns ⊥. 

B. Analysis of New Assumptions 

The master theorem of Bonehet al. [35] is widely 

used to prove the difficulty of an assumption in generic 

bilinear groups. It is relatively straightforward to extend 

the master theorem of Bonehet al. in generic multilinear 

groups as pointed by Bonehet al. [17]. The master 

theorem informally states that if the target polynomial is 

independent of given polynomials in the assumption, 

then the advantage of an adversary in generic groups is 

bounded by q
2
d/p, where q is the maximum number of 

queries, d is the maximum degree of polynomials that 

the adversary can obtain by performing pairing 

operations, and p is in Zp. 

In the (k, N)-MDHE assumption, the target 

polynomial f is aN+1 ki=−11 ci where a and(pairings) to 

obtainciare variables. We need twoa
N

+
1 
since polynomial 

multiplications 

a
N

+
1 
is not directly given in the assumption, and we need 

k−1 

polynomial multiplications to obtaink+1 polynomial 

multiplications (pairings) to obtain the target
k
i=

−
1
1 

ci. 

Thus, we need 

polynomial, but this is not allowed in the k-leveled 

multilinear maps. Therefore, the target polynomial is 

independent of given polynomials. We have the degree 

of polynomials d = O(kN) since the adversary can obtain 

elements with high-degree a
kN

by performing pairing 

operations. For λ-bit security, we can set p≈ 2
λ 
since N is 

a polynomial value in a security parameter. The 

difficulty of the assumption of Bonehet al. [17] is 
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already given in generic multilinear groups. We can also 

follow their analysis since our cMDHE assumption is a 

slight modification of their assumption. In the (k,n,l)-
cMDHE assumption, the target polynomial f is 

a
2n

−
1
bc where a, b, and c are variables. We need n 

polynomial multiplications (pairings) to obtain a
2n

−
1 

since {a2i }i∈[0,n] are only− given in the assumption. Thus 

the target polynomial a
2n 1

bc should reside in 2n+l −1-

level since b is a polynomial in the l-level and c is a 

polynomial in the n −1-level, but this is not allowed in 

the 2n +l −2-leveled multilinear maps. Therefore, the 

target polynomial is independent of given polynomials. 

We have d
n) since the assumption includes elements n 

3λ
 

with high degree a . For λ-bit security, we can set p≈ 2 

instead of p ≈ 2
λ
. 
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